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Abstract

Human-aware planning requires an agent to be aware of the
mental model of the humans, in addition to their physical or
capability model. This not only allows an agent to envisage
the desired roles of the human in a joint plan but also antici-
pate how its plan will be perceived by the latter. The human
mental model becomes especially useful in the context of an
explainable planning (XAIP) agent since an explanatory pro-
cess cannot be a soliloquy, i.e. it must incorporate the hu-
man’s beliefs and expectations of the planner. In this paper,
we survey our recent efforts in this direction.

Cognitive AI teaming (Chakraborti et al. 2017a) requires a
planner to perform argumentation over a set of models dur-
ing the plan generation process. This is illustrated in Fig-
ure 1. Here, MR is the model of the agent embodying the
planner (e.g. a robot), and MH is the model of the human
in the loop. Further,MR

h is the model the human thinks the
robot has, andMH

r is the model that the robot thinks the hu-
man has. Finally, M̃R

h is the robot’s approximation ofMR
h ;

for the rest of the paper we will be using MR
h to refer to

both since, for all intents and purposes, this is all the robot
has access to. Note that the human mental modelMR

h is in
addition to the (robot’s belief of the) human modelMH

r tra-
ditionally encountered in human-robot teaming (HRT) set-
tings and is, in essence, the fundamental thesis of the recent
works on plan explanations (Chakraborti et al. 2017b) and
explicable planning (Zhang et al. 2017). The need for expli-
cable planning or plan explanations occurs when the models
– MR and MR

h – diverge so that the optimal plans in the
respective models may not be the same and hence optimal
behavior of the robot in its own model is inexplicable to the
human. This is also true for discrepancies betweenMH and
MH

r when the robot might reveal unrealistic expectations of
the human in a joint plan.

An explainable planning (XAIP) agent (Fox et al. 2017;
Langley et al. 2017; Weld and Bansal 2018) should be able
to able to deal with such model differences and participate
in explanatory dialog with the human such that both of them
can be on the same page during a collaborative activity.
This is referred to as model reconciliation (Chakraborti et
al. 2017b) and forms the core of the explanatory process of
an XAIP agent. In this paper, we look at the scope of prob-
lems engendered by this multi-model setting and describe

Figure 1: Argumentation over multiple models during the
deliberative process of a human-aware planner (e.g. robot).

the recent work in this direction. Specifically –

- We outline the scope of behaviors engendered by human-
aware planning, including joint planning as studied in
teaming using the human model, as well as explicable
planning with the human mental model;

- We situate the plan explanation problem in the context of
perceived inexplicability of the robot’s plans or behaviors
due to differences in these models;
- We discuss how the plan explanation process can be

seen as one of model reconciliation whereMR
h (and/or

MH
r ) is brought closer toMR (MH );

- We discuss how explicability and explanation costs can
be traded off during plan generation;

- We discuss how this process can be adapted to handle
uncertainty or multiple humans in the loop;

- We discuss results of a user study that testify to the use-
fulness of the model reconciliation process;

- We point to ongoing work in the space of abstractions and
deception using the human mental model.



Background
A Classical Planning Problem is a tupleM = 〈D, I,G〉
with domain D = 〈F,A〉 – where F is a finite set of flu-
ents that define a state s ⊆ F , and A is a finite set of ac-
tions – and initial and goal states I,G ⊆ F . Action a ∈ A
is a tuple 〈ca, pre(a), eff±(a)〉 where ca is the cost, and
pre(a), eff±(a) ⊆ F are the preconditions and add/delete
effects, i.e. δM(s, a) |= ⊥ if s 6|= pre(a); else δM(s, a) |=
s ∪ eff+(a) \ eff−(a) where δM(·) is the transition
function. The cumulative transition function is given by
δM(s, 〈a1, a2, . . . , an〉) = δM(δM(s, a1), 〈a2, . . . , an〉).

This forms the classical definition of a planning problem
(Russell and Norvig 2003) whose models are represented in
the syntax of PDDL (McDermott et al. 1998). The solution to
the planning problem is a sequence of actions or a (satisfic-
ing) plan π = 〈a1, a2, . . . , an〉 such that δM(I, π) |= G.
The cost of a plan π is given by C(π,M) =

∑
a∈π ca

if δM(I, π) |= G; ∞ otherwise. The cheapest plan π∗ =
arg minπ C(π,M) is the (cost) optimal plan with cost C∗M.

In previous work (Nguyen et al. 2017) we introduced an up-
dated representation of planning problems in the form of an-
notated models to account for uncertainty or incompleteness
over the definition of a planning model. In addition to the
standard preconditions and effects associated with actions,
it introduces the notion of possible preconditions and effects
which may or may not be realized in practice.

An Incomplete (Annotated) Model is the tuple M =
〈D, I,G〉 with a domain D = 〈F, A〉 – where F is a finite
set of fluents that define a state s ⊆ F , and A is a finite set
of annotated actions – and annotated initial and goal states
I = 〈I0, I+〉, G = 〈G0,G+〉; I0,G0, I+,G+ ⊆ F . Ac-
tion a ∈ A is a tuple 〈ca, pre(a), p̃re(a), eff±(a), ẽff ±(a)〉
where ca is the cost and, in addition to its known precondi-
tions and add/delete effects pre(a), eff±(a),⊆ F each action
also contains possible preconditions p̃re(a) ⊆ F contain-
ing propositions that action a might need as preconditions,
and possible add (delete) effects ẽff ±(a) ⊆ F ) contain-
ing propositions that the action a might add (delete, respec-
tively) after execution. Similarly, I0,G0 (and I+,G+) are
the known (and possible) parts of the initial and goal states.

Each possible condition f ∈ p̃re(a)∪ ẽff ±(a) has a prob-
ability p(f) associated with it denoting how likely it is to
appear as a known condition in the ground truth model – i.e.
p(f) measures the confidence with which that condition has
been learned. The sets of known and possible conditions in
M are called Sk(Γ(M)) and Sp(Γ(M)). Here Γ is a map-
ping function that converts domain model conditions into
propositions in a meta space (Chakraborti et al. 2017b).

An instantiation of an annotated model M is a classi-
cal planning model where a subset of the possible condi-
tions have been realized – given by the tuple inst(M) =
〈D, I,G〉 with domain D = 〈F,A〉, initial and goal states
I = I0 ∪ χ; χ ⊆ I+ and G = G0 ∪ χ; χ ⊆ G+ respec-
tively, and action A 3 a = 〈ca, pre(a) ← pre(a) ∪ χ; χ ⊆
p̃re(a), eff±(a)← eff±(a)∪χ; χ ⊆ ẽff ±(a)〉. Given an an-
notated model with k possible conditions, there may be 2k

such instantiations, which forms its completion set.

The Likelihood L of an instantiation inst(M) of the an-
notated model M is given by –

L(inst(M)) =
∏
f∈Sp(Γ(M))∧Sk(Γ(inst(M))) p(f)

×
∏
f∈Sp(Γ(M))\Sk(Γ(inst(M)))(1− p(f))

Such models turn out to be especially useful for the repre-
sentation and learning of human (mental) models from ob-
servations, where uncertainty after the learning process can
be represented in terms of model annotations as in (Nguyen
et al. 2017; Bryce et al. 2016). Let MR

H be the culmination
of a model learning process and {MR

hi
}i be the completion

set of MR
H . Note that one of these models – g(MR

H) – is the
actual ground truth (i.e. the human’s real mental model).

The USAR Domain
We will illustrate the algorithms in this paper in a typical
(Bartlett 2015) Urban Search And Reconnaissance (USAR)
tasks where a remote robot is put into disaster response op-
eration often controlled partly or fully by an external hu-
man commander who orchestrates the entire operation. The
robot’s job in such scenarios is to infiltrate areas that may be
otherwise harmful to humans, and report on its surroundings
as and when required / instructed by the external supervisor.
The external usually has a map of the environment, but this
map may no longer be accurate in the event of the disaster
– e.g. new paths may have opened up, or older paths may
no longer be available, due to rubble from collapsed struc-
tures like walls and doors. The robot (internal) however may
not need to inform the external of all these changes so as
not to cause information overload of the commander who
may be otherwise engaged in orchestrating the entire op-
eration. The robot is thus delegated high level tasks but is
often left to compute the plans itself since it may have a bet-
ter understanding of the environment. However, the robot’s
actions also contribute to the overall situational awareness
of the external, who may require explanations on the robots
plans when necessary. In general, differences in the models
of the human and the robot can manifest in any form (e.g.
the robot may have lost some capability or its goals may
have changed). In the current setup, we deal with differences
in the map of the environment as available to the human-
robot team, i.e. these differences can then be compiled to
differences only in the initial state of the planning problem
(the human model has the original unaffected model of the
world). This makes no difference to the proposed algorithms
which treat all model changes equally.

The USAR domain is also ideal for visualizing to non-
expert participants in comparison to, for example, logistics-
type domains which should ideally be evaluated by experts.
This became an important factor while designing the user
studies. The USAR domain is thus at once close to motion
planning as easily interpreted by non-experts but also incor-
porates typical aspects of task plans such as preconditions
and effects in terms of rubble removal, collapsed halls, etc.
and relevant abilities of the robot. As such, simulated USAR
scenarios provide an ideal testbed for developing algorithms
for effective human-robot interaction. Figure 2:B illustrates
our setup (https://youtu.be/40Xol2GY7zE).



Figure 2: A mock USAR setting for studying the human-robot relationship in a typical disaster response team.

Human-Aware Planning Revisited
The human-aware planning paradigm introduces the mental
model of the human in the loop into a planner’s delibera-
tive process, in addition to the planner’s own model in the
classical sense and the robot’s estimate of the human model.

A Human-Aware Planning (HAP) Problem is given
by the tuple Ψ = 〈MR,MH

r ,MR
h 〉 where MR =

〈DR, IR,GR〉 is the planner’s model of a planning problem,
while MR

h = 〈DR
h , IRh ,GRh 〉 is the human’s understanding

of the same, and MH
r = 〈DH

r , IHr ,GHr 〉 is the planner’s
belief of the human’s capability model.

The solution to the human-aware planning problem is a joint
plan (Chakraborti et al. 2015) π = 〈a1, a2, . . . , an〉; ai ∈
{DR ∪ DH

r } such that δΨ(IR ∪ IHr , π) |= GR ∪ GHr . The
robot’s component in the plan is referred to as π(R) =
〈ai | ai ∈ π ∧ DR〉; and similarly π(H) for the human.
Efforts to make planning more “human-aware” has largely
focused on adapting π(R) to meet the demands of π(H)
such as in (Alami et al. 2006; 2014; Cirillo et al. 2010;
Koeckemann et al. 2014; Tomic et al. 2014; Cirillo 2010;
Chakraborti et al. 2015; 2016; Talamadupula et al. 2014;
Zhang et al. 2015) in the context of human-robot teams
where a robot sacrifices optimality in its own model in fa-
vor of globally optimal joint plans. From the perspective of
an XAIP agent, computation of the joint plan becomes more
interesting when consideringMR

h as well, i.e. how π(R) is
perceived by the human. One solution is to be “explicable”,
i.e. make the robot conform to what the human expects of it.

Explicable Planning
An “explicable” solution to the human-aware planning prob-
lem is a plan π such that (1) it is executable (but may no
longer be optimal) in the robot’s model but is (2) “closer” to
the expected plan in the human’s model –

(1) δMR(IR, π) |= GR; and

(2) C(π,MR
h ) ≈ C∗MR

h
.

Such a plan is referred to as explicable because the hu-
man can explain it in their current mental model. “Close-
ness” or distance to the expected plan is modeled here
in terms of cost optimality, but in general this can be
any metric such as plan similarity (Srivastava et al. 2007;
Nguyen et al. 2012). In existing literature (Zhang et al. 2017;
2016; Kulkarni et al. 2016) this has been achieved by modi-
fying the search process so that the heuristic that guides the
search is driven by the robot’s knowledge of the human men-
tal model. Such a heuristic can be either derived directly
(Kulkarni et al. 2016) from the mental model or learned
(Zhang et al. 2017) through interactions in the form of affin-
ity functions between plans and their purported goals. The
solutions generated this way satisfy the planner’s goal, as
required by Condition (1), but are also biased towards the
human’s expectations as required by Condition (2) above.

It is interesting to note that, while mental modeling allows
for human-awareness in the positive sense, it can also open
up pathways for deception. Indeed, recent work (Kulkarni et
al. 2018) has looked at how the concept of explicability can
be flipped to obfuscate a robot’s intentions.

Plan Explanations
The other approach would be to compute optimal plans
in the planner’s model (which may appear as inexplica-
ble to the human) and provide an explanation of that plan
in terms of the model differences – this is referred to
as the process of model reconciliation (Chakraborti et al.
2017b). Although explanation of plans has been investigated
in the past (c.f. (Kambhampati 1990; Sohrabi et al. 2011;
Seegebarth et al. 2012; Meadows et al. 2013)), much of that
work has involved the planner explaining its decisions with
respect to its own model (i.e. current state, actions and goals)
and assuming that this “soliloquy” also helps the human in
the loop. While such a sanguine assumption may well be
requited when the human is an expert “debugger” and is in-
timately familiar with the agent’s innards, it is completely
unrealistic in most human-AI interaction scenarios, where



the humans may have a domain and task model that differs
significantly from that used by the planner. We posit then
that explanations should be seen as the robot’s attempt to
move the human’s model to be in conformance with its own.
The model reconciliation process thus forms the core of the
explanation process for an XAIP agent and is thus the focus
of the rest of the paper.

Our view of explanation as a model reconciliation process
is supported by studies in the field of psychology which stip-
ulate that explanations “privilege a subset of beliefs, exclud-
ing possibilities inconsistent with those beliefs... can serve
as a source of constraint in reasoning...” (Lombrozo 2006).
This is achieved in our case by the appropriate change in the
expectation of the model that is believed to have engendered
the plan in question. Further, authors in (Lombrozo 2012)
also underline that explanations are “typically contrastive...
the contrast provides a constraint on what should figure in a
selected explanation...” - this is especially relevant in order
for an explanation to be self-contained and unambiguous.
Hence the requirement of optimality, which not only ensures
that the current plan is valid in the updated model, but is also
better than other alternatives or foils (Miller 2017).

The model reconciliation viewpoint can explain many
phenomena in both explanation and transparency – e.g. the
fact that well-performing, efficient teams require less, not
more, explicit communication (Entin and Serfaty 1999) and
the characteristics of effective team debriefing (Tannenbaum
and Cerasoli 2013) after a mission or project.

The optimality criterion, and argumentation over the hu-
man mental model, makes the problem fundamentally dif-
ferent from model change algorithms in (Göbelbecker et al.
2010; Herzig et al. 2014; Eiter et al. 2010; Bryce et al. 2016;
Porteous et al. 2015) which focus more on the feasibility of
plans or correctness of domains.

The Model Reconciliation Process
The explanation process, in response to a plan π that the
robot has come up with and is perceived as inexplicable by
the human, begins with the following question –

Q: Why not a different plan π̂?

This questions can arise due to one or both of two causes –

- MR
h , i.e. the human’s approximation of the robot model is

wrong. Here, since it knows its own ground truth model,
the robot can use an approximation of the human mental
model (known unknown) to perform model reconciliation
so that both of them are on the same page.

- MH
r , i.e. the robot’s approximation of the human model

is wrong. The above approach would not work here since
the robot does not know what it does not know (i.e. the
real human model is an unknown unknown). However, if
the above approach fails to provide a satisfactory response
from the human, then the robot can conclude it must be
because of this and seek out more information to update
its understanding of the human model.

For the first case, the model reconciliation approach would
be to provide an (1) explanation or model update E such that

the (2) robot optimal plan is (3) feasible and at least as good
as the foil in the updated model, i.e.

(1) M̂R
h ←−MR

h + E ; and

(2) C(π,MR) = C∗MR ;

(3) δM̂R
h
(ÎRh , π) |= ĜRh ∧ C(π,M̂R

h ) < C(π̂,M̂R
h ).

The question can also be posed in the following form –

Q: Why plan π?

This, in essence, involves an implicit quantifier over all pos-
sible foils. Condition (3) above then must ensure that plan π
is now also optimal in the updated mental model –

(3) C(π,M̂R
h ) = C∗M̂R

h

.

In (Chakraborti et al. 2017b) we explore different model rec-
onciliation processes considering four characteristics –

R1. Completeness - Explanations of a plan should be able to
be compared and contrasted against other alternatives, so
that no better solution exists. We enforce this property by
requiring that in the updated human model the plan being
explained is optimal – i.e. Conditions (3).

R2. Conciseness - Explanation should be concise so that they
are easily understandable to the explainee. Larger an ex-
planation is, the harder it is for the human to incorporate
that information into her deliberative process.

R3. Monotonicity - This ensures that remaining model differ-
ences cannot change the completeness of an explanation,
i.e. all aspects of the model that engendered the plan have
been reconciled. This thus subsumes completeness and re-
quires more detailed explanations.

R4. Computability - While conciseness deals with how easy
it is for the explainee to understand an explanation, com-
putability measures the ease of computing the explanation
from the point of view of the planner.

A Minimally Complete Explanation (MCE) is the short-
est explanation that satisfies conditions (1) and (2).

A Minimally Monotonic Explanation (MME) is the
shortest explanation that is both complete and monotonic.

A Plan Patch Explanation (PPE) only includes (all the)
model updates pertaining to actions in the plan π.

A Model Patch Explanation (MPE) includes all the
model updates |MR ∆MR

h |.
The requirements outlined above are thus often at odds - an
explanation that is very easy to compute may be very hard
to comprehend (c.f. Table 1). A detailed account of these
explanations can be found in (Chakraborti et al. 2017b); we
will concentrate on MCEs for the rest of the paper.

Remark Note that during model reconciliation process,
the robot model need not be the ground truth. However, the
robot can only explain with respect to what it believes to
be true. This can, of course, be wrong and be refined itera-
tively through interaction with the human, as demonstrated
in a decision support setting in (Sengupta et al. 2017).



Table 1: Requirements for different types of explanations.

Explanation Type R1 R2 R3 R4
Plan Patch Explanation 7 3 7 3

Model Patch Explanation 3 7 3 3
Minimally Complete Explanation 3 3 7 ?

Minimally Monotonic Explanation 3 3 3 ?

Remark We insisted that explanations must be compatible
with the planners model. If this is relaxed, it allows the plan-
ner to generate “explanations” that it knows are false and
deceive the human. In recent work (Chakraborti and Kamb-
hampati 2018), we have shown that participants in a study
were generally positive towards lying for the greater good
especially when those actions would not be determined by
their teammate, but is loath to suspend normative behavior,
robot or not, in the event that they would be caught in that
act (unless the robot is the recipient of the misinformation!).

Remark While in this line of work, we are concerned more
with the generation of the content of explanations rather than
the actual delivery of this information, there has been some
recent work to this end. Depending on the type of interaction
between the planner and the human, this can be achieved
by means of natural language dialog (Perera et al. 2016), in
the form of a graphical user interface (Sengupta et al. 2017;
Chakraborti et al. 2018b) or even in mixed-reality interfaces
(Chakraborti et al. 2018d; 2018c).

How to chose between Explicability/Explanations?
The two processes of explanations and explicability are in-
trinsically related in an agent’s deliberative process (c.f. Fig-
ure 5) – it can generate a explicable plan to the best of its
ability or it can provide explanations whenever required, or
it can even opt for a combination of both if the expected
human plan is too costly in its own model (e.g. the human
might not be aware of some safety constraints) or the cost of
communication overhead for explanations is too high (e.g.
limited communication bandwidth). In the following discus-
sion, we try to attain the sweet spot between plan explana-
tions and explicability during the decision making process.

From the perspective of design of autonomy, the explica-
bility versus explanations trade-off has two interesting im-
plications – (1) the agent can now not only explain but
also plan in the multi-model setting with the trade-off be-
tween compromise on its optimality and possible explana-
tions in mind; and (2) the argumentation process is known
to be a crucial function of the reasoning capabilities of
humans (Mercier and Sperber 2010), and now by exten-
sion of autonomous agents as well, as a result of these al-
gorithms that incorporate the explanation generation pro-
cess into the decision making process itself. General ar-
gumentation frameworks for resolving disputes over plans
have indeed been explored before (Belesiotis et al. 2010;
Emele et al. 2011). Other forms of argumentation (Russell
and Wefald 1991) has been aimed at meta-level reasoning of
resource usage or cost of solutions. Our work can be seen
as the specific case where the argumentation process is over
a set of constraints that trade-off the quality of a plan and

Figure 3: Balancing explicability and explanations in HAP.

the cost of explaining it. This is, in fact, the first of its kind
algorithm that can achieve this.

The result of a trade off in the relative cost of explicability
and explanations during the plan generation process is a plan
π and an explanation E such that (1) π is executable in the
robot’s model, and with the explanation (2) in the form of
model updates it is (3) optimal in the updated human model
while (4) the cost (length) of the explanations, and the cost of
deviation from optimality in its own model to be explicable
to the human, is traded off according to a constant α –

(1) δMR(IR, π) |= GR;

(2) M̂R
h ←−MR

h + E ;

(3) C(π,M̂R
h ) = C∗M̂R

h

; and

(4) π = argminπ { |E| + α× | C(π,MR)− C∗MR | }.

With higher values of α the planner generates plans that re-
quire more explanation; with lower α it will generate more
explicable plans. Thus, using this hyperparameter, an au-
tonomous agent can deliberate over the trade-off in the costs
it incurs in being explicable to the human (second minimiz-
ing term in (4)) versus explaining its decisions (first mini-
mizing term in (4)). Note that this trade-off is irrespective of
the cognitive burden of those decisions on the human in the
loop. For example, for a robot in a collapsed building during
a search and rescue task, may have limited bandwidth for
communication and hence prefer to be explicable instead.

Demonstration Figure 2:A illustrates a section of the en-
vironment where this whole scenario plays out. The orange
marks indicate rubble that has blocked a passage, while the
green marks indicate collapsed walls. The robot, currently
located at the position marked with a blue O, is tasked with
taking a picture at location marked with an orange O in the
figure. The external commander’s expects the robot to take
the path shown in red, which is no longer possible. The robot
armed with MEGA∗ has two choices – it can either follow the
green path and explain the revealed passageway due to the



collapse, or compromise on its optimal path, clear the rub-
ble and proceed along the blue path. A video demonstration
can be viewed at https://youtu.be/Yzp4FU6Vn0M.
The first part of the video demonstrates the plan generated
by MEGA∗ for low α values. As expected, it chooses the blue
path that requires the least amount of explanation, i.e. the
most explicable plan. In fact, the robot only needs to explain
a single initial state change to make its plan optimal –

remove-has-initial-state-clear_path p1 p8

This is an instance where the plan closest to the human
expectation, i.e. the most explicable plan, still requires an
explanation. Moreover, in order to follow this plan, the robot
must perform the costly clear passage p2 p3 action
to traverse the corridor between p2 and p3, which it could
have avoided in its optimal plan (shown in green). Indeed,
MEGA∗ switches to the robot’s optimal plan for higher values
of α along with the following explanation –

add-has-initial-state-clear_path p6 p7

add-has-initial-state-clear_path p7 p5

remove-has-initial-state-clear_path p1 p8

What happens if the mental model is unknown?
The model reconciliation process described above is only
feasible if inconsistencies of the robot model with the hu-
man mental model are known precisely. Although we made
this assumption so far as a first step towards formalizing the
model reconciliation process, this can be hard to achieve in
practice. Instead, the agent may end up having to explain its
decisions with respect to a set of possible models which is
its best estimation of the human’s knowledge state learned
in the process of interactions. In this situation, the robot
can try to compute MCEs for each possible configuration.
However, this can result in situations where the explana-
tions computed for individual models independently are not
consistent across all possible target domains. Thus, in the
case of model uncertainty, such an approach cannot guaran-
tee that the resulting explanation will be acceptable. Instead,
we want to find an explanation such that ∀i π∗

M̂R
hi

≡ π∗MR .

This is a single model update that makes the given plan
optimal (and hence explained) in all the updated domains
(or in all possible domains). At first glance, it appears that
such an approach, even though desirable, might turn out to
be prohibitively expensive especially since solving for a sin-
gle MCE involves search in the model space where each
search node is an optimal planning problem (Chakraborti et
al. 2017b). However, it turns out that the same search strat-
egy can be employed here as well by representing the hu-
man mental model as an annotated model (Sreedharan et al.
2018a). Condition (3) for an MCE now becomes –

(3) C(π, g(MR
h )) = C∗

g(MR
h

)

This is hard to achieve since it is not known which is the
actual mental model of the human. So we want to preserve
the optimality criterion for all (or as many) instantiations of
the incomplete estimation of the explainee’s mental model.
Keeping this in mind, we define robustness of an explanation
for an incomplete mental models as the probability mass of
models where it is a valid explanation.

Robustness of an explanation E is given by –

R(E) =
∑
inst(M̂R

h
) s.t.C(π,inst(M̂R

h
))=C∗

inst(M̂R
h

)

L(inst(M̂R
h ))

A Conformant Explanation is such that R(E) = 1.

This means a conformant explanation ensures that the given
plan is explained in all the models in the completion set of
the human model.

Demonstration. Consider now that the robot is located at
P1 (blue) and needs to collect data from P5 (c.f. Figure 2:C).
While the human commander understands the goal, she is
under the false impression that the paths from P1 to P9 and
P4 to P5 are unusable (red question marks). She is also un-
aware of the robot’s inability to use its hands. On the other
hand, while the robot does not have a complete picture of the
human’s mental model, it understands that any differences
between the models are related to (1) Path from P1 to P9;
(2) Path from P4 to P5; (3) Robot’s ability to use its hands;
and (4) Whether the Robot needs its arm to clear rubble.
Thus, from the robot’s perspective, the human model can be
one of sixteen possible models (one of which is the actual
mental model). Here, a conformant explanation for the opti-
mal robot plan (blue) is as follows (a demonstration can be
viewed at https://youtu.be/bLqrtffW6Ng) –

remove-known-INIT-has-add-effect-hand_capable

add-annot-clear_passage-has-precondition-hand_capable

remove-annot-INIT-has-add-effect-clear_path P1 P9

Note that conformant explanations can contain superflu-
ous information – i.e. asking the human to remove non-
existent conditions or add existing ones. In the previous ex-
ample, the second explanation (regarding the need of the
hand to clear rubble) was already known to the human and
was thus superfluous information. Such redundant informa-
tion can be annoying and may end up reducing the human’s
trust in the robot. This can be avoided by –

- Increasing the cost of model updates involving uncertain
conditions relative to those involving known precondi-
tions or effects. This ensures that the search prefers ex-
planations that contain known conditions. By definition,
such explanations will not have superfluous information.

- However, such explanations may not exist. Instead, we
can convert conformant explanations into conditional
ones by turning each model update for an annotated
condition into a question and only provide an expla-
nation if the human’s response warrants it – e.g. in-
stead of asking the human to update the precondition of
clear passage, the robot can first ask if the human
thinks that action has a precondition hand usable.

Thus, one way of removing superfluous explanations is to
engage the human in conversation and reduce the size of the
completion set. Consider the following exchange –

R : Are you aware that the path from P1 to P4 has collapsed?

H : Yes.

> R realizes the plan is optimal in all possible models.

> It does not need to explain further.



A Conditional Explanation is represented by a policy
that maps the annotated model (represented by aMmin and
Mmax model pair) to either a question regarding the exis-
tence of a condition in the human ground model or a model
update request. The resultant annotated model is produced,
by either applying the model update directly into the cur-
rent model or by updating the model to conform to human’s
answer regarding the existence of the condition.

Note that in asking questions such as these, the robot is
trying to exploit the human’s (lack of) knowledge of the
problem in order to provide more concise explanations. This
can be construed as a case of lying by omission and can raise
interesting ethical considerations (Chakraborti and Kamb-
hampati 2018). Humans, during an explanation process, tend
to undergo this same “selection” process (Miller 2017) as
well in determining which of the many reasons that could
explain an event is worth highlighting. It is worthwhile in-
vestigating similar behavior for autonomous agents.

Anytime Explanations Since dealing with model uncer-
tainty can be computationally expensive, we relax the mini-
mality requirement and introduce an anytime depth first ex-
planation generation algorithm. This is explained in detail in
(Sreedharan et al. 2018a).

What if there are multiple humans in the loop?
While generating explanations for a set of models, the robot
is essentially trying to cater to multiple human models at the
same time. We posit then that the same approaches can be
adopted to situations when there are multiple humans in the
loop instead of a single human whose model is not known
with certainty. As before, computing separate explanations
(Chakraborti et al. 2017b) for each agent can result in situa-
tions where the explanations computed for individual mod-
els independently are not consistent across all the possible
target domains. In the case of multiple teammates being ex-
plained to, this may cause confusion and loss of trust, es-
pecially in teaming with humans who are known (Cooke et
al. 2013) to rely on shared mental models. Thus conformant
explanations can find useful applications in dealing with not
only model uncertainty but also model multiplicity.

In order to do this, from the set of target human mental
models we construct an annotated model so that the pre-
conditions and effects that appear in all target models be-
come necessary ones, and those that appear in just a subset
are possible ones. As before, we find a single explanation
that is a satisfactory explanation for the entire set of models,
without having to repeat the standard MRP process over all
possible models while coming up with an explanation that
can satisfy all of them and thus establish common ground
(Chakraborti et al. 2018c; Sreedharan et al. 2018b).

Demonstration We go back to our use case, now with two
human teammates, one external and one internal. A video of
the demonstration is available at https://youtu.be/
hlPTmggRTQA. The robot is now positioned at P1 and is
expected to collect data from location P5. Before the robot
can perform its surveil action, it needs to obtain a set of
tools from the internal human agent. The human agent is ini-
tially located at P10 and is capable of traveling to reachable

Figure 4: Hierarchical explanation generation approach.

locations to meet the robot for the handover. Here the exter-
nal commander incorrectly believes that the path from P1 to
P9 is clear and while the one from P2 to P3 is closed. The
internal human agent, on the other hand, not only believes in
the errors mentioned above but is also under the assumption
that the path from P4 to P5 is not traversable. Due to these
different initial states, each of these agents ends up generat-
ing a different optimal plan. The plan expected by the exter-
nal commander requires the robot to move to location P10
(via P9) to meet the human. After collecting the package
from the internal agent, the commander expects it to set off
to P5 via P4. The internal agent, on the other hand, believes
that he needs to travel to P9 to hand over the package. As
he believes that the corridor from P4 to P5 is blocked, he
expects the robot to take the longer route to P5 through P6,
P7, and P8 (orange). Finally, the optimal plan for the robot
(blue) involves the robot meeting the human at P4 on its way
to P5. Using MEGA∗-Conformant, we find the smallest
explanation, which can explain this plan to both humans –

add-INIT-has-clear_path P4 P5

remove-INIT-has-clear_path P1 P9

add-INIT-has-clear_path P2 P3

While the last two model changes are equally relevant for
both the agents, the first change is specifically designed to
help the internal. The first update helps convince the human
that the robot can indeed reach the goal through P4, while
the next two help convince both agents as to why the agents
should meet at P4 rather than other locations.

How to model human expertise?
Most of the above discussion has focused on generating ex-
planations in cases where both the human and the robot un-
derstands the task at the same granularity. Applying model
reconciliation without acknowledging the difference in the
level of “expertise” can lead to confusion and information
overload. Indeed, explanation generation techniques for ma-
chine learning systems have explicitly modeled this differ-
ence (Ribeiro et al. 2016; 2018).

In (Sreedharan et al. 2018c), authors have looked at ways
of generating explanations when the human has access to
only an abstract version of the model of the robot. Specif-
ically, they focus on state abstractions where the abstract
model was formed by projecting out a certain subset of state
fluents (Srivastava et al. 2016), though the principles are
likely to carry over to other types of abstraction as well (e.g.
temporal abstractions of the types discussed in (Marthi et al.
2007)). Since the abstract model may be logically weaker,
the human may incorrectly believe that an optimal plan sug-



gested by the planner is suboptimal. When presented with
the plan π, the human can respond by either presenting a set
of foils F . In such cases, the explanation takes the form of
information about a set of state properties which when intro-
duced into the human model resolves or invalidates the set
of foils. Thus, the explanation can be uniquely represented
by a sequence of propositions ε = 〈p1, .., pk〉 as follows –

(1) A set of foils F = {π1, .., πm} such that ∀π ∈
F, δMR(IR, π) 6|= GR and δMR

h
(IRh , π) 6|= GRh

(2) An explanation ε = 〈p1, ..., pk〉, such that M̂R
h ←−MR

h + E ;

(3) ∀π ∈ F, δM̂R
h
(IRh , π) 6|= GRh

One of the main challenges with this method is the uncer-
tainty about the human model. To address this, the authors
build a lattice of possible models from the task model called
model lattice (L) as shown in Figure 4. The lattice consists
of possible abstractions of the concrete task model and an
edge exists between two models if there exists a single predi-
cate that can be projected from one model to create the other.
The foils are used to estimate the possible human model and
use this estimate to compute the explanations.

How do humans reconcile models?
The design of “human-aware” algorithms is, of course, in-
complete without evaluations of the same with actual hu-
mans in the loop. Thus, in the final part of this discussion,
we will report on the the salient findings from a controlled
user study we undertook recently in order to evaluate the
usefulness of the model reconciliation approach. A detailed
report of the study can be read at (Chakraborti et al. 2018a).

Experimental Setup For the study, we exposed the exter-
nal commanders interface (c.f. Figure 2:D) to participants
who, based on their map (which they are told may differ
from the robots) had to identify if a given plan (which may
be optimal in the robot model or explicable or even bal-
anced) looks optimal or satisficing to them. If the player is
unsure, they can ask for an explanation. The explanations
provided are one of the types described before.

Study-1 In the first set of experiments, participants as-
sumed the role of the explainer. It was found that, when left
to themselves, they generated explanations of the type MPE
or (if communication was restricted) MCE. Further, in sub-
jective responses, they considered model reconciliation as
necessary and sufficient for the explanation process.

Study-2 Here, participants assumed the role of the ex-
plainer, and had to identify, on the basis of explanations pro-
vided the quality of the given plan. We found that the partici-
pants were indeed able to distinguish between optimal plans
(when provided with MCEs or MPEs) and (perceived) sat-
isficing plans (when provided with PPEs) and were in gen-
eral overwhelmingly in favor of model reconciliation as an
effective form of explanation. We further found that expli-
cable plans indeed reduced the call of explanations, while
balanced plans preserved their outlook towards the explana-
tions while allowing the robot to trade-off its communication
cost with the optimality of its plans.

Figure 5: A subsumption architecture for HAP.

Work in Progress
So far we have have not considered differences in the cost
function which, though falls under the scope of model differ-
ences to be explained, can introduce interesting challenges
to the model reconciliation problem. It may be possible to
learn such functions through interactions with the human as
in (Zhang et al. 2017; Kulkarni et al. 2016). Further, we
have not modeled the computational capability of the hu-
man which also affect the process – this can be potentially
handled by modeling ε−optimal humans or by considering
top-K plans (Katz et al. 2018) while checking the optimality
condition during model space search. Finally, we do not con-
sider system level constraints (such as time and resources) in
the explanations which remain out of scope of explanations
viewed as a model reconciliation process.

Conclusion
The different behaviors engendered by multi-model argu-
mentation can be composed to form more and more sophis-
ticated forms of human-aware behavior. We thus conclude
with a hierarchical composition of behaviors in the form of
a subsumption architecture for human-aware planning, in-
spired by (Brooks 1986). This is illustrated in Figure 5. The
basic reasoning engines are the Plan and MRP (Model Rec-
onciliation) modules. The former accepts model(s) of plan-
ning problems and produces a plan, the latter accepts the
same and an produces a new model. The former operates in
plan space and gives rise to classical, joint and explicable
planning depending on the models it is operating on, while
the latter operates in model space to produce explanations
and belief shaping behavior. These are then composed to
form argumentation modules for trading of explanations and
explicability and human-aware planning in general.
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