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Abstract

When humans are given a policy to execute, we expect there
to be erroneous executions and delays due to possible confu-
sions in identifying a state. So if an algorithm were to com-
pute a policy for a human to execute, it ought to consider
these in its decision. An optimal policy that is poorly exe-
cuted maybe much worse than a suboptimal policy that is ex-
ecuted faithfully and faster. In this paper, we consider these
problems of delays and erroneous execution when computing
policies for humans that would act in a domain modeled by
a Markov Decision Process (MDP). We present an algorithm
to search for such policies and show experimental results in a
Warehouse Worker domain and Gridworld domain. We also
present human studies to show how our assumptions translate
to real-world behavior.

Introduction
Markov Decision Processes (MDPs) have been used ex-
tensively in many applications([Boucherie and Van Dijk
2017],[Hu and Yue 2007],[White 1993]) but what if the
agent that has to act in such a scenario is a human, the opti-
mal policy maybe too complex to reasonably expect a human
to execute it accurately or quickly. Our cognitive and per-
ceptual limitations may result in mistakes, such as confusing
similar states. We may also take longer to execute an opti-
mal policy since it requires more cognitive effort to discern
between similar states, which is necessary when the policy
for those states are different. A sub-optimal but simpler pol-
icy that can be more faithfully and quickly executed can be
preferable in some scenarios. There is precedent for prefer-
ring simpler policies in the medical literature; one example
of this is the Apgar score[AmericanAcademyOfPediatrics
2006]. It is a policy that relies on a simple scoring method to
determine what action to take with newborn babies. Doctors
and nurses are taught a simple scoring system on few easily
measured signals to determine the health(state) of the baby
and act according to this single score. A more complex pol-
icy that is conditioned on more or granular measurements
and prior states could result in costly mistakes.

In our paper, we specifically consider the problem of con-
fusing similar states, i.e., state-aliasing, and how that could
affect the value of a policy in Markov Decision Processes
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(MDP). We work with the assumption that a policy which
uses the same action across similar states is easier to follow
or execute (which we show in human studies), and that sim-
ilar states can potentially be confused with each other (state-
aliasing), especially under time pressure or other stressors.
This state aliasing can lead to errors in execution due to
misidentifying states. It can also result in delays in execu-
tion when similar states have different actions in the policy;
if the actions were the same, then there is no need to wait
and discern the states properly.

Our work in this paper is connected to prior work by
[Whitehead and Lin 1995], which considers state-aliasing
through errors in perception (robot sensors). However, their
objective is to improve the sensing policy (active percep-
tion) so as to have a better internal representation for the
policy execution. This would add to the difficulty of follow-
ing the policy and we cannot expect the user to consistently
compute accurate posterior likelihoods given a sensing pro-
cess. Instead, we take the likelihood of the human agent
(mis)classifying states as an input. These classification like-
lihoods can be empirically determined through evaluating
the human; we will discuss this more shortly.

To illustrate the problem, let us consider a simple version
of a Warehouse Worker domain. In this domain, a worker is
at the end of a conveyor belt and customer orders of differ-
ent sizes arrive. The human has to decide the size of the box
needed (small, medium, or large). If (for example) the differ-
ence in cost of box sizes is very small, then the simplest pol-
icy is to always use the large box. This would save on delays
to decide the right action. If the policy actions are easily de-
cided, then more orders are completed (greater throughput),
and the company gets more revenue. More importantly, the
cost of erroneous execution– trying to put a medium-sized
order in a small box– is avoided. If one were to ignore pol-
icy execution errors and delays, the optimal policy computed
for the original MDP could actually be suboptimal when it
is executed by the human due to the delays and errors in ex-
ecution. Such execution errors can especially be pronounced
in high-stress situations, which tend to cause people to miss
perceptual cues (Tunnel vision/Tunneling hypothesis), and
poor cognitive performance [Staal 2004].

In this paper, we formally define the problem of com-
puting a policy for a State-Aliased MDP (SAMDP). In our
definition, we describe how to model two effects of state-



aliasing on human policy execution; the likelihood of in-
action (delay) and the likelihood of erroneous execution.
We also quantify the notion of policy-confusion likelihood.
We then present a modified policy-iteration algorithm that
searches for policies that optimize for value while consid-
ering delays and erroneous execution. Our algorithm also
supports weighting the search to look for those with lower
policy confusion likelihood; such policies can be easier for
humans to follow. We show experimental results for our ap-
proach on two domains; Gridworld and Warehouse Worker
domain. We also present the results of our human studies
which compares the execution of simple and difficult poli-
cies (higher likelihood of policy confusion) and show how
our assumptions translate to real-world behavior. Lastly,
we make our codebase available for future research, and
it supports defining any discrete state, discrete action MDP
through CSV files (Comma Separated Values); these can be
conveniently edited in any freely available spreadsheet soft-
ware.

Figure 1: High value policies corresponding to different pol-
icy confusion scores; the policy on the left has a higher con-
fusion score.

Problem Definition
The problem of generating policies for a State-Aliased MDP
(SAMDP) is defined by the tuple < S,A, T, r, γ, φ, p >.
Each of the terms are defined as follows:

• S is the set of states in the domain;

• A is the set of actions including aØ which is a delay ac-
tion.

• T : S×A×S → [0, 1] is the transition function that out-
puts the likelihood of transition from one state to a suc-
cessor state after an action. This includes the delay action
transitions.

• r : S × A → R is the reward function. This includes the
reward associated to delay actions.

• γ is the discount factor

• φ : S×S → [0, 1] is the likelihood of classifying the first
state as the second .

• p : S → [0, 1] is the likelihood of starting in a particular
state.

The objective is to output is a policy π : S → A that seeks
to maximize the policy value (equation 2) while mitigating
the delays by keeping the policy confusion score (equation -
3). One must account for the classification likelihoods when
computing the policy since the policy that is actually exe-
cuted (and the value) is affected by them. The Classification
likelihood (φ) is the pivotal factor in this problem. If there
was no classification of states (state aliasing), then it is a
standard MDP, and policy iteration would solve it.

The classification likelihood can lead to policy execution
errors. This can happen when the (mis)classification of states
causes the actions of the aliased states to be executed in the
current state. Formally, the probability of an action in a state
for a given policy after accounting for the classification like-
lihoods is defined by Equation 1.

πφ(s, a, π) =
∑
s′∈S

φ(s, s′) ∗ π(s′, a) (1)

where π(s, a) returns the likelihood of the action in the input
state for the policy π, and πφ is the policy after consider φ.
Due to this effect on policy, the problem setting becomes
non-markovian as the action and transitions in one state is
affected by that of another state. The value after the policy
is affected by state classification likelihoods is defined as:

Vφ(π, p) =
∑
s∈S

p(s) ∗ V (πφ, s) (2)

where V : π × S → R is the value of the state for the pol-
icy πφ; πφ is the resultant policy after the effects of state-
aliasing are applied to the input policy pi, as defined in
Equation 1.

The state classification likelihood also determines policy
confusion score, where the confusion score is formalized as:

CS(π, p) =
1

|S|
∗
∑
s1∈S

∑
s2∈S

φ(s1, s2) ∗ 1[π(s1) 6= π(s2)]

(3)
The confusion score will lie in the range [0, 1] where a score
of 0 implies all similar states have exactly the same action.
A score of 1 can only happen if a state is always mistaken
for another state and the policy mismatches.

The reasoning for this quantification of confusion is as
follows; if any pair of states can be confused with each other,
but the action in the policy is different, then it adds to the
likelihood of policy confusion. How much it adds to confu-
sion is determined by the likelihood of confusing the two
states, given by φ, and the policy given to the human π;
two very similar states with different actions adds more to
the confusion score than two less similar states with differ-
ent actions (less likely to confuse the two actions). So the
classification likelihood is used as the weight when consid-
ering each pair of states whose actions in the policy do not
match. For an example of policies that have different policy
confusion scores but comparable values, see the gridworld
example in image 1 where the sole reward is obtained by
transitioning into the bottom-right grid. Note that we do not
assume that the classification-likelihood (φ) is symmetric; in
some settings the state identification maybe biased.



Effects of State Aliasing On Policy Execution
By Humans

As mentioned, when state-aliasing is a problem, there are
two effects on policy execution that we can model; action de-
lay and incorrect execution. Incorrect execution occurs when
the human chooses the wrong action because the state was
confused with another, and the action of the confused state
was executed. This is as described in Equation 1.

The other effect is the action delay. After observing the
real state, the human might infer that it is the (most likely)
state s1; this can be thought of as the maximum aposteriori
probability (MAP) state in the human’s mind after seeing
the real state in the environment. However, the human might
not be certain and think that it could be another state s2 as
well. If the actions are different in the policy for these two
states, then one might spend additional time observing the
environment again rather than act, resulting in a delay. If
the actions were the same in the possible states, then the
human can act without further delay. For example, in the
Warehouse Worker domain, the policy is that all customer
orders can be put in the large boxes. So, regardless of the
workers confusion about the order size, they can act without
further state-resolution and avoid delays.

We model the likelihood of delay as increasing with the
number of states that the current state could be confused
with, and have different actions in the policy. We model this
delay as a special delay-action. This is a null action due to
confusion arising from uncertainty about the state. We as-
sume that the human knows the policy or has access to the
policy via a chart or device, so there is no consideration for
forgetting the policy. The likelihood of delay action is de-
termined by the policy and state confusion likelihoods. We
define this in Equation 4.

p(aØ, s) =
∑
s1∈S

φ(s, s1) ∗
∑
s2∈S

φ(s2, s) ∗ 1[π(s1) 6= π(s2)]

(4)
This is the likelihood of one delay action and –being a

probability– is less than 1. The likelihood of two delay ac-
tions is smaller, and so forth with the likelihood of many suc-
cessive delay actions becoming geometrically smaller. This
delay effect is worth considering if the time taken to identify
a state, is comparable to the time to act. When this is true,
the rewards for actions ought to be scaled accordingly. This
can be done as in Equation 5.

r̂(s, a) = r(s, a) ∗ γbt(s,a)/Tmin−1c (5)

where Tmin is the length of the shortest action, or the aver-
age time taken to identify a state, and t(s, a) is the time taken
by an action in a state. For example, if the average time to
identify a state is 2 seconds, the discount factor is 0.9, and
an action is 6 seconds with a reward of 10, then the updated
reward is 10∗0.9d6/2−1e = 8.1 . What this is says is that the
action goes through intermediary states with reward 0, and
each step is of time Tmin. If actions take variable amounts
of time, then the expected discounted reward should be used.
This is comparable to the average reward rate described in

[Das et al. 1999] in that the reward is scaled proportional to
the time time. In our version, the action is for a fixed number
of steps and is discounted. We describe this scaling of reward
for the sake of completeness. In this work, we assume the in-
put rewards are appropriately scaled since the delay reward
(cost) for each state is part of the input specification.

If, however, actions take much longer than the time to
identify a state, then the delay due to state identification
could be ignored and just focus on erroneous execution. For
emergency medical procedures such as a policy for crash
cart [Martin-Cua 2018] usage, all actions are quick, and de-
lay due to state identification is costly and should be factored
in. In our methodology (and associated codebase) we pro-
vide the means to turn off consideration of the delay effect
in our algorithm if that is the right choice for the problem by
setting p(aØ, s) = 0 for all states which is otherwise com-
puted as in Equation 4. Note that the dynamics of the delay
action are defined by the domain, and maybe as simple as
just staying in the same state.

Policy Computation Algorithm for SAMDP
Finding an optimal solution to the SAMDP problem is
challenging since the problem is both non-markovian and
requires optimizing two sometimes opposing objectives;
namely the policy value and confusion score. To handle this,
we adopt a modified policy iteration approach that we call
Global Value Policy Iteration (GVPI). The confusion score
of a policy is factored into the value computation by the
delay actions which occur more often in complex policies.
When selecting actions during policy iteration, we need to
consider not just the local value effect, but also the effect on
the value of other states. This is because the possible state
misidentification couples the policy of different states; this
means the policy in one state affects the policy in another,
and so affects the value of other states (possibly negatively).
This can lead to update loops and never converge. So at each
step of policy iteration, we consider the average value of
over all states as the measure by which we update the policy.

When we evaluate a policy change in GVPI, we first com-
pute the likelihood of delay actions for each state after the
policy change. Then we compute the state transition like-
lihoods for that policy (including the delay actions transi-
tions), and compute the corresponding Markov Reward Pro-
cess (MRP)[Ibe 2013]. Using this MRP we compute the
value for all state using a closed form computation (will dis-
cuss shortly). We compute a score over the values for all
states and use that to choose the action in policy iteration.
Since we consider all state values, we dubbed this G̈lobal-
Value Policy Iteration.̈ We did try a policy gradient approach
as well (search over the space of soft policies), and found
GVPI to perform better for our experiments. We now ex-
plain our approach in detail.

Computing Delay Action Likelihoods
In each policy iteration step of GVPI, we start with a deter-
ministic policy. First, we account for the delay due to pol-
icy confusion. We compute this delay action likelihood as in
Equation 4. The remaining probability 1−p(aØ) is the like-
lihood of the human acting. Then we account for erroneous



execution by considering the probability that the incorrect
state was inferred. So the likelihood of an action being ex-
ecuted is defined by Equation 1. This gives us the updated
policy πφ that accounts for delays and erroneous execution.

Translating To The Equivalent MRP
After computing the updated policy, we compute the equiv-
alent Markov Reward Process (MRP) associated to that pol-
icy; this is done by computing the transition likelihoods be-
tween ordered pairs of states based on the policy. The re-
ward for each state is the reward for each action taken from
that state, multiplied by the likelihood of that action being
taken. This includes the delay action and the associated re-
ward (cost) of delay in that state.

The reason we transform it to an MRP is that it allows
us to exactly compute the values of all states in one step
(Equation 6).

~vs = (I − γ ∗ Pss′)−1 ∗ ~rs (6)
Where I is the identity matrix, and Pss′ is the probabil-

ity of transition between two states, which is defined by the
policy.

GVPI Search Process
After computing the value of the states, we do not just sum
or take the average of the state values, rather we consider the
average of the inverse of state values as in Equation 7.

ps(π, p) =
∑
s∈S

p(s) ∗ 1

V (πφ, s) + 1
(7)

where πφ is the policy derived from the input policy π
after applying the effects of state aliasing as described in
Equation 1. V (πφ, s) is the value of this policy after apply-
ing the delay action likelihoods in Equation 4.

With this score, GVPI iteratively proceeds to minimize
this score, it does not maximize like in policy iteration since
we have taken the inverse of the value. We chose to score
actions this way because we observed that optimizing for
the sum of state values can cause the policy iteration search
to ignore the value of some states in favor of high value
states since the overall sum is greater. In some problems,
this maybe acceptable. But for some others, such as in grid-
world, it produces more policies where the goal state is not
always reachable from all states, which is undesirable. This
score helps consider the state values of all states more uni-
formly; a state with value 0 contributes more to the score
(which is to be minimized) that a state with a high value,
higher value states contribute less. To understand this intu-
itively, one need only think of the graph y = 1/x for x > 1
to observe the trend just described.

As one might intuit, this policy iteration search is not
guaranteed to find the optimal policy for the expected value.
Rather it is a means to generate a set of good policies that
optimize for expected value and account for delays in execu-
tion. Repeated random restarts help find better policies, and
in each attempt it will stop when the policy can no longer
be changed to improve the score. This is as opposed to us-
ing standard policy iteration which could end up in infinite

loops for SAMDPs. Since SAMDPs are non-markovian and
the state policies are coupled, the policy update in one state
could reduce the value of another state by changing it’s pol-
icy. The policy iteration procedure could get stuck updating
back and forth between coupled states, which we saw when
we tried to solve SAMDPs with policy iteration.

Trading Value and Confusion
Thus far we have not discussed how to explicitly penalize
the search process for policy confusion. By incorporating
a delay action into the execution when policies are confus-
ing (similar states, different actions), the policy search au-
tomatically goes towards simpler policies unless the reward
is sufficiently higher to merit additional risk of confusion.
If one is interested in searching for even simpler policies,
our methodology also supports pushing the search process
to look for policies of lower confusion score, which will of-
ten come at the expense of value. The policy score is updated
to allow this as in Equation 8

ps2(π, p) = (1− ω) ∗ ps1(π, p) + ω ∗ CS(π, p) (8)

where CS is the confusion score from Equation 3 and
ω is a hyperparameter between [0, 1] which determines the
emphasis given to reducing confusion, where 1 means the
search will focus purely on reducing confusion. Additional
scaling of the two scores was not helpful because the ps1
score is already in the range [0, 1], and so too is the confu-
sion score.

For an example of the kind of simple policies found by
GVPI for a gridworld setting, see Figure 8. The policy on
the right is the simpler policy output by GVPI. The policy
on the left is the optimal policy without considering state-
aliasing, that is output by standard policy iteration for the
original MDP. The left policy has a lower expected value in
SAMDP, and a higher policy confusion score.

Obtaining the Classification Likelihood Matrix
The likelihood of two states getting misidentified would be
affected by the domain features being used, and a person’s
perceptual capabilities. In this paper we take the state clas-
sification probabilities as input.

In an actual application, the probability of state classifi-
cation (also misclassification) may need to be empirically
determined. For example, in the warehouse worker domain
an employee could be tested to see how they classify pack-
ages by a supervisor. This can be used to compute the clas-
sification likelihoods. When determining these likelihoods,
the human should be asked to classify within some desired
time cutoff or as quickly as possible. The classification like-
lihoods would be affected by the time allowed to identify
a state for that domain. Then based on classification likeli-
hoods, a policy maybe tailored specifically to that person.
This data may also be averaged over groups of people, and a
standard policy could be developed.

Alternatively, the state classification likelihood could be
defined by normalized state similarities. This is reasonable if



a similarity function that reflects human perception is avail-
able for the domain. We take such an approach for our hu-
man studies which will be discussed.

Experiments and Results
We tested our algorithm on two domains; Warehouse Worker
and Gridworld. The discount factor was set to γ = 0.9.
We varied the weight for reducing confusion (ω) between
[0, 1] in increments of 0.1. For each setting, we ran the GVPI
search 10 times. The results can be consistently reproduced
from our codebase since any variability (like randomness in
initialization) in the program is controlled by a seed param-
eter. This is set to 0.

Warehouse Worker Domain Setup
In the Warehouse Worker domain, a worker stands at the
end of a conveyor belt on which customer orders are sent.
The customer orders comprises of a group of products. Each
order needs to be put into a small, medium, or large box.
Additionally, the worker has to decide if bubble wrap is nec-
essary for the products in the order.

The states in this domain is what kind of an order a set
of products actually is, and there is an associated correct
action for each order type. The state and action sets are
defined by the cartesian product of the set of box sizes
{small,medium, large}, and if bubble wrap is needed
{wrap, no wrap}. For example a set of glass items could
be a small order that requires a small box with bubblewrap,
small×wrap. When a worker sees an order, it is not always
apparent what box size is needed. For some orders, they may
mistake a small order for a medium sized one or vice versa.
Additionally, due to the diversity of products, the worker has
no idea which products actually need bubble wrap or not.
For example there maybe tempered (hardened) glass prod-
ucts that do not need bubble wrap, but the worker might not
know this.

In our conceptualization of this domain, after the worker
goes through basic training in the warehouse, the worker
is evaluated by the supervisor to evaluate how they clas-
sify orders. This becomes the classification likelihoods for
φ. Based on this, a policy is developed for the worker by
considering the company’s average estimates for the money
made per order when using different types of packaging (re-
ward specification), and the likelihood of order types.

We now detail the domain configuration settings we used
in our experiments for the warehouse domain. The classifi-
cation likelihoods are shown in Table 1. The likelihood of
a worker confusing any small order with any medium sized
order or vice versa is about 16%, and is the same for mis-
classifying any medium with any large order. The likelihood
of confusing a small order with a large order is less than 1%.
The likelihood of the worker correctly determining if bub-
blewrap is needed is 50% across all order sizes; there are so
many products that their accuracy for determining if bubble
wrap is needed is random.

If the worker tries to put a medium sized order in a small
box, the action will fail, and they will stay in the same state.
Using any box size smaller than necessary will fail, but any

l l× w m m× w s s× w
l 32.68% 32.68% 12.50% 12.50% 0.98% 0.98%

l× w 32.68% 32.68% 12.50% 12.50% 0.98% 0.98%
m 16.34% 16.34% 25.00% 25.00% 16.34% 16.34%

m× w 16.34% 16.34% 25.00% 25.00% 16.34% 16.34%
s 0.98% 0.98% 12.50% 12.50% 32.68% 32.68%

s× w 0.98% 0.98% 12.50% 12.50% 32.68% 32.68%

Table 1: Classification Likelihood Matrix (φ) for
Warehouse Worker Domain, where (s,m,l) stands for
(small,medium,large) and “w” means bubblewrap needed.

larger size box will work. A successful action will transition
to the next order (state) based on the probability of differ-
ent types of orders. For our experiments we used a uniform
distribution of customer orders (states). Lastly, the reward
for using the exact action for an order is 1. The reduction
in reward if a larger box is used is −0.1, and a further re-
duction of −0.1 is incurred if bubblewrap was needed but
wasn’t used. If bubble is used but not needed, there is no re-
duction in reward; we consider that the cost of bubblewrap
in comparison to the monetary reward for a completing an
order is negligible.

Gridworld Experimental Setup
For our experiments in Gridworld, we used a 10x10 grid
(100 states). The actions include moving up, down, left and
right. The transitions are deterministic. The likelihood of
confusing a grid position with another grid state is deter-
mined by the L1 distance as defined in Equation 9. This re-
sults in neighboring grid states being much more likely to
get confused with the current state than those further away.
Taking an invalid action, such as moving up from the top
row of the grid results in no motion. The agent would get
a reward of 100 for transitioning into the goal state in the
bottom-right corner.

φgrid(s, s
′) =

L1(s, s′)2∑
s′′∈S L1(s, s

′′)2
(9)

Results
The Expected Value of policies after accounting for delays
and erroneous execution are shown in Figures 4 and 2. The
box plot shows the upper and lower quartiles, and the circles
represent outliers. The trendline connects the median values
from each setting of ω. The first setting with a “*” represents
the optimal policies discovered policy iteration in the origi-
nal MDP. We do 30 random restarts to get a set of optimal
policies for the original MDP. The expected value of these
“MDP-optimal” policies are not optimal after accounting for
delays and errors in execution in the SAMDP. The policies
found by GVPI are often better, especially for lower settings
of ω for both domains. In both domains as ω increases the
expected value goes down as expected. The expected value
for gridworld may seem low but that is expected since it is
averaged over 100 states with only 1 state having all the re-
ward. Add to this the reward discounting, delays and erro-
neous execution, the values computed are smaller than one



might expect. We verified this by hardcoding the known op-
timal policy which accounts for delays and execution errors,
and it’s expected value averaged over all states is 0.34. Our
experiments can be easily verified/reproduced with our code
which we will provide. All experiments are controlled by a
random number seed and so is consistently reproducible.

Figure 2: Expected Value of policies generated with varying
ω in Gridworld

Figure 3: Confusion Score of policies generated with vary-
ing ω in Gridworld

The confusion score of policies generated by varying ω
are shown in Figures 3 and 5 for gridworld and warehouse
domain respectively. To interpret these correctly, please keep
in mind that the maximum confusion score a policy can have
is 1, by our definition in Equation 3. In the confusion graphs
of both domains, one will notice that the policy confusion
is already quite low even with ω = 0. This is because the
effects of policy confusion is already folded into the com-
putation of value in GVPI through the delay effect and erro-
neous execution. A simpler policy would have less of both,

Figure 4: Expected Value of policies generated with varying
ω in Warehouse domain

Figure 5: Confusion Score of policies generated with vary-
ing ω in Warehouse domain

and so it is naturally preferred during the search. Increasing
ω only serves to push the search even more towards simpler
policies.

For Gridworld, the median confusion value of the poli-
cies decreases more gracefully with increasing ω. We think
this is likely due to the spread and availability of policies
with different tradeoffs between value and confusion. This
is not so in the Warehouse domain. Increasing the weight
for confusion only results in it getting stuck at worse local
optima in the search. We think this is due to the sparsity
of policies. Also, note that the absolute value of the pol-
icy confusion is still low; the worst it does is 0.175 and
the maximum confusion a policy can achieve in this domain
is 1.0. In comparison, the optimal-in-MDP policies have a
much higher(worse) confusion score, and their correspond-
ing range of expected values in the SAMDP is low (Figure
4.



Figure 6: Expected Value and Confusion of policies gener-
ated during search in Gridworld

Figure 7: Expected Value and Confusion of policies gener-
ated during search in Warehouse domain

In both domains, we see high variance for expected value
and confusion, especially in the middle range of ω val-
ues, which corresponds to the tradeoff difficulty during the
search. Lastly, we show the expected value and confusion of
policies in one plot for each of the domains in Figures 6 and
7 respectively. The blue dots represent policies discovered
by GVPI, and the orange dots are the optimal-MDP poli-
cies. This is also to show that GVPI explores the space of
tradeoffs between expected value and confusion.

Human Studies
We conducted a human study to test the hypothesis that the
execution performance of humans using a simple policy is
higher in contrast to when a difficult (higher likelihood of
confusion) policy is given. We gamified the study by ask-
ing each participant to execute a policy as given in Figure 8

by matching a displayed color to the appropriate arrow di-
rection and maximize their score. The same of participants
repeated the game twice; for a difficult policy and for a sim-
ple policy. The correct policy was always displayed on the
side, so they did not have to memorize it, only follow it.

Note that some color states are intentionally visually sim-
ilar to other color states to cause state-aliasing. The partic-
ipants were filtered by their ability to distinguish between
different colors so that they could execute both difficult and
simple policies. The table 2 shows results for the 41 partici-
pants in this study.

We wanted to see if the number of actions executed was
greater with the simpler policy; since less confusion likeli-
hood should imply fewer delays. We are especially the num-
ber of correct actions (throughput). We also wanted to check
if the rate of errors was lower. Since data from the two set-
tings of simple and difficult policies may have unequal vari-
ances, we used a Welch’s t-test (one-tail) to evaluate the re-
sults. We used the implementation in the Scipy python li-
brary [Virtanen et al. 2020]

For the total number of actions executed by a participant,
we can reject the null hypothesis that the number of actions
executed is the same or lower with the simpler policy than
the difficult policy; the one-tailed T-test gave a p-value of
< .00001. For the second hypothesis, that a simpler policy
yields a higher number of correctly executed actions, a one-
tailed T-test gave a p-value of < .00001. So with a very low
likelihood of error, we can say our hypothesis held good in
this human study. The results are clearly significant at p <
0.05.

We are also interested in the rate of errors when executing
the simple versus difficult policies. We wanted to show that
the rate of errors in a difficult policy is more than that of a
simple policy. A one-tail T-test for the rate of errors (number
of errors/total attempts) was significant only at a p-value of
0.065. So while we have good reason to believe this to be
the case, we cannot say with confidence (p-value < 0.05)
that the rate of errors is definitely lower. There might have
been other factors affecting the rate of errors that we had
not considered, such as the speed of execution of the simpler
policy. One possible effect is that when the participants were
acting very fast with the simpler policy, the likelihood of
errors went up.

We also note that our GVPI algorithm consistently out-
puts the simpler policy shown in Figure 8 for a simple MDP
corresponding to the human studies. In this MDP, the re-
wards are 1.0 for the correct action(s) in the simple policy,
1.1 for the actions that are different in the difficult policy (see
Figure 8), and 0 for all other actions. Transitions to succes-
sor states are independent of the action and equally likely;
we needed this to test policy execution uniformly across all
states. The discount factor γ was 0.9, and we modeled the
state classification likelihoods such that similar color states
were equally likely (50%) to be confused as each other. The
simpler policy output by GVPI is desirable since the addi-
tional reward for choosing the optimal action is small com-
pared to the loss that could be incurred due to delays and
incorrect execution.

Overall, our human studies show that giving a simpler



policy reduces the delays (higher number of actions exe-
cuted) and increases the throughput (number of correct ac-
tions). This translates to more rewards accrued. The rate of
incorrect actions was not conclusively shown to be lower,
even if the data gives us good reason to think so. There could
be more factors that affected the execution, such as the rate
of policy execution. Running each trial for longer might give
us more conclusive data.

Figure 8: The simple policy (left), and difficult policy (right)
given to users to execute

Simple Policy (µ, σ) Difficult Policy (µ, σ)
Correct Attempts 26.34, 5.62 17.95, 3.77
Total Attempts 28.12, 6.13 19.68, 3.82

Table 2: Mean and standard deviation for the number of cor-
rect actions and total actions executed for the simple and
difficult policies

Related Work
In the scientific literature on teaching humans a policy to
execute, there is a strong precedent for giving simpler poli-
cies to humans. As mentioned, the Apgar score [Ameri-
canAcademyOfPediatrics 2006] is one such example from
the medical literature. With the Apgar score, the doctors can
score how well a baby endured the birthing process and,
based on the score, determine what subsequent steps are
needed. It is a scoring process based on a few features and is
recomputed at 5-minute intervals to check the baby’s health
periodically. Rather than have one very complicated proce-
dure, a simpler, reliable computation is done more often.
This idea was taken further in the work ”Super Sparse Lin-
ear Integer Models (SLIM)” by [Ustun and Rudin 2016] in
which the authors build sparse linear models with emphasis
on smaller integer weights because they make computation
by humans easier and more reliable.

We are similarly motivated to compute simpler policies
for MDPs that account for our cognitive limitations, and er-
rors we may make. Specifically, we consider how humans
can confuse similar states, especially under duress or time
constraints, and how it can be easier to work with a policy
that maps similar states to similar actions. [Lage et al. 2019]
works with a similar assumption, and proposes an Imitation

Learning (IL) based summary extraction that uses a Gaus-
sian Random Field model [Zhu, Lafferty, and Ghahramani
2003] for human policy extrapolation. They considered that
people use the similarity between states for generalizing pol-
icy summaries to states that were not part of the summary.
For one of their domains, they reported that 78% of their
participants used state similarity based policy-summary re-
construction. The authors also argued that state similarity
could have an effect regardless of the objective or reward for
the state. This is in accordance with our modeling choice of
having the classification matrix be independent of rewards
and goals. Finally, their IL method led to better policy sum-
maries, and using state similarities helped. This mirrors our
work in that state-similarity –which in our case can lead to
state aliasing– ought to be considered for generating better
policies. We also confirm the fact that humans are more ef-
fective when following a simpler policy as we show in our
human studies.

Recall that one of the effects of state aliasing on policy
execution is delayed execution which can bring in time into
the problem. Adding time to MDPs is considered in Semi-
Markov Decision Processes(SMDP). SMDP considers the
case when time between one decision and the next is a ran-
dom variable. This has some similarities to how we model
delay time since the number of delay steps in a state becomes
a random variable. However, there are two critical differ-
ences. First, the cause of the delay is not due to an explicit
action in the policy nor dependent on the current state alone.
Rather, the delay is due to state aliasing and subsequent pol-
icy confusion. Second, SMDPs are Markovian, whereas this
paper addresses a problem in which the actions of states are
coupled and so becomes Non-Markovian.

If we ignore the execution delay due to confusion and
just think about the state-aliasing, then this problem can
be seen as a Partially-Observable Markov Decision Process
(POMDP) problem. If we were to tackle that limited version
of the problem with POMDP solvers, there is still the issue
that we cannot give a POMDP policy to the human; a pol-
icy that is conditioned on belief state (likelihood of possible
states). We cannot expect the human to track their poste-
rior state likelihoods accurately. POMDP policies can also
be defined by histories of observations. If we think of the
state that the human inferred as an observation emitted (the
human only knows this ”observation”), then the policy we
return from solving SAMDP is akin to a POMDP policy
conditioned on a history of 1 observation.

With respect to the state-aliasing phenomenon in MDP
literature, this has been studied in the lens of POMDPs for
agents with active-perception capabilities [Whitehead and
Ballard 1991],[Tan 1991], [Whitehead and Lin 1995]. In
[Whitehead and Lin 1995] the authors call the problem as
perceptual aliasing when an internal state maps to more than
one external state due to limitations of the sensing process.
Their approach of ”Consistent Representation”(CR) pulls
together the prior work on the perceptual aliasing problem.
The common assumption across those works is that a con-
sistent representation of the state that is Markovian can be
built from the immediate environment with sensing actions.
[Whitehead and Lin 1995] also considered ”stored-state” ar-



chitectures where history was incorporated for state infer-
ence. In all of these works, there are additional computation
steps required in the policy to improve state detection. These
approaches assume the agent has sufficient computational
capacity, and consistently infers the correct subsequent state
representation; this is necessary since the policy is condi-
tioned on this consistent representation. We do not think one
can expect this from humans. So we instead rely on reduc-
ing the execution errors by allowing for incorrect sensing
(incorrect state classification) by humans.

Conclusion and Future Work
In this paper, we describe the problems that can arise from
state aliasing when humans execute a policy; these are ex-
ecution errors and delays in policy execution. We formally
define the problem of computing policies in SAMDPs and
define how delays and errors can be computed for a given
policy in the SAMDP using the state classification likeli-
hood. We discuss how the state classification likelihood can
be empirically evaluated for human agents and also how do-
main rewards can be appropriately discounted to account for
state detection time. Given the description of SAMDP, we
present a modified policy iteration algorithm (GVPI) which
searches for policies that account for delays and errors, and
optimize the expected value. GVPI also allows searching for
simpler policies by increasing a hyperparameter that penal-
izes policy confusion score. Lastly, we conducted human
studies to show how our assumptions translate to real-world
behavior.
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