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Abstract

There has been quite a bit of interest in developing explana-
tory techniques within ICAPS-community for various plan-
ning flavors, as evidenced by the popularity of the XAIP
workshop in the past few years. Though most existing works
in XAIP focus on creating explanatory techniques for native
planning-based systems that leverage human-specified mod-
els. While this has led to the development of valuable tech-
niques and tools, our community tends to overlook a very im-
portant avenue where the XAIP techniques, particularly ones
designed around symbolic human-readable models, could
make a practical and immediate impact. Namely to help gen-
erate symbolic post hoc explanations for sequential decisions
generated through inscrutable decision-making systems, in-
cluding Reinforcement-Learning and any inscrutable model-
based planning/approximate dynamic programming methods.
Through this paper, we hope to discuss how we could gen-
erate such post hoc explanations. Motivate how one could
use the current XAIP techniques to address many explana-
tory challenges within this realm and also discuss some of
the open research challenges that arise when we try to apply
our methods within this new application context.

1 Introduction
Recent years have seen an upswing in the number of works
done in the space of explainable planning. Many strides have
been made in introducing tools and techniques designed
to explain decisions derived through automated planning
methods. Though there remains a particular area of appli-
cation, ripe for investigation from the XAIP community,
that seems surprisingly underexplored: The use of symbolic
models to generate post hoc explanations for sequential
decisions derived from inscrutable systems. While there are
some works like (Sreedharan et al. 2020) that have started
looking at pieces of the problem, the direction as a whole
seems mostly overlooked. This is unfortunate given the vast
array of techniques developed within our community that
could be leveraged to address many explanatory challenges
within these settings by first mapping the task information
into a symbolic model description like PDDL. Moreover,
models like PDDL provides a very intuitive representation
for planning problems as they are built around concepts
from folk psychology (Miller 2018). In the end, this work
follows a growing consensus that while it is unclear whether
AI systems themselves would need to use symbols in their

internal processing for effective decision-making, there
is no doubt that people are comfortable with and expect
to communicate with these systems in terms of symbols
that are meaningful to them. PDDL provides a particularly
expressive, intuitive, and well-studied representation for
sequential decision-making problems.

In this paper, we hope to make a systematic case for ap-
plying and adapting existing methods for both explanation
and model learning to this new setting. We will provide a
rough characterization of potential solutions to this problem
and possible scenarios where such solutions may fall short.
We will end the paper with a discussion of open problems
related to post hoc explanations, including the challenges re-
lated to ensuring the precision/soundness of explanations. A
core tenet that underlies many of the most successful sym-
bolic AI methods is the idea of compiling problems into
equivalent but more pliable representations. That is, we un-
derstand the same problem could be represented in multi-
ple ways, and the choice of representation scheme in which
to express the problem is one we are free to make to opti-
mize for our ability to solve the problem and to reuse exist-
ing tools. It is time we bring the same ethos to explanation
by recognizing that translation of black-box problems into
symbolic models like PDDL provides us with many advan-
tages, including the ability to draw from rich literature on
explanation generation built around such models.

2 Case Study: Montezuma’s Revenge

Figure 1: A
screenshot from
the first screen
of the game
Montezuma’s
revenge.

Following (Sreedharan et al. 2020),
we will use Montezuma’s revenge
(Wikipedia contributors 2019), a
popular RL benchmark that re-
quires sequential reasoning, as an
example to illustrate the potential
utility of such explanations. Fig-
ure 1 presents a screenshot from
the first level of the game. Here
the player is supposed to get the
key on the left side of the screen.
Let us imagine, an observer who
is not familiar with all the rules of
the game is trying to make sense
of plans generated by an automated
decision-making system. Let us as-



Figure 2: The diagrammatic representation of the various
steps involved in the generation of post hoc symbolic ex-
planations.

sume the system comes up with a plan that involves the
Panama-Joe (the protagonist of the game), making its way
to the lowest platform, then moving left and then jumping
over the skull, and finally getting to the key. A user unaware
of the effects of touching the skull may ask why the agent
did not try to move through the skull. The system itself may
not be reasoning over concepts like skulls, ladders, etc., but
may instead be reasoning at the level of pixels or game RAM
states. So it may be unable to communicate that touching the
skull when Joe does not have a sword would end up killing
him. The system could try to simulate this alternate plan
(provided the system can provide some visualization of the
game) and if the system is reasoning over pixels, even try to
highlight all the regions in the failure state that the system
believes are important (which hopefully includes the skull
and the inventory region). Unfortunately, in addition to in-
creasing the cognitive load on the human’s end, as pointed
out by previous works (Atrey, Clary, and Jensen 2019) such
visual annotations can be confusing. Instead, the user might
prefer the agent to describe why this alternate plan may fail
in terms they understand. For example, the agent could ex-
plain that for Joe to move left it needs to satisfy the precon-
dition not next to skull or has sword.

3 Post Hoc Symbolic Explanation
Figure 2, presents an overview of the learning/explanation
generation process. The overall process starts with the user
of the system that provides a set of vocabulary items and
an explanatory query. Within the context of an AI system,
the user described here could correspond to people interact-
ing with the system under many capacities, including sys-
tem designers, end-users, and even domain experts. In this
paper, we will mostly be agnostic to the specific user types,
though one could easily see the role and background of the
user could change the type of approaches used in each step.
Also in the most general cases, the one specifying the vo-
cabulary and the one raising the query need not be the same,
but we will also ignore this distinction for now. With the
vocabulary set and the query in place, the explanation gen-
eration procedure can interact with the actual system to gen-
erate a symbolic approximation that is sufficient to provide
a response to the current query. If the system fails to iden-
tify an appropriate explanation, this is a good indicator that

the original vocabulary set is incomplete and would require
additional vocabulary items to create a higher fidelity sym-
bolic model to generate the required explanations. In the rest
of the section, we will look at each of these individual steps
of the overall flow. One of the requirements for this method
is the ability to leverage the internal models of the agent.
Here we are using the term model in a very general sense.
These could correspond to learned models being used by the
agent (for example neural network models learned over la-
tent state representations), procedural models, internal simu-
lators, or even non-parametric models consisting of original
experience being used by the agent to form its policy. The
only requirement we place on the model is that we are able
to interact with it and potentially sample experiences from it.
In regards to the symbolic model, we will generally assume
some variant of PDDL.

3.1 Vocabulary Learning
One of the core research challenges we are trying to address
here is that of vocabulary mismatch. Plainly put, we need
to overcome the fact that the system may be reasoning
about the task in terms that a user of the desired background
may not understand. Thus, mapping these models into any
symbolic representation isn’t enough as these may still be
defined in terms that carry no real significance to the users.
After all, a single atomic transition system could be synthe-
sized from quite a different set of PDDL models, defined
over various state factors. This makes many of the automatic
model synthesis methods like (Bonet and Geffner 2019) or
(Asai and Fukunaga 2018), which also try to automatically
generate symbols, ill-suited for our methods. One of our
core proposals in this paper is the need to include human
input in some stage of the learning pipeline to determine the
factors on which the model will be built. Basically, we would
need people to specify at least parts of the action space and
the state fluents over which the model would be learned. The
core requirement for each vocabulary item is for the system
to learn a way in which it can detect when the state contains
a specific fluent value or when the action (or a trajectory)
performed by the agent corresponds to an action specified by
the user. A reasonable way to represent such mappings from
system representations to human vocabulary items would
be to learn binary classifiers for each item. In general, all
the data collection strategies discussed below will assume
that the user can actually observe the current state and agent
actions. This doesn’t necessarily mean the agent actually
reasons about the world in terms of image representations. It
may well be that the human can observe the agent acting in
the world or the agent can expose some visual representation
of its internal state (like in the case of ATARI agents, where
the agent presents a visual representation of its ram state).
Actions The first obvious task would be to let the system
identify the set of actions. This would be relatively straight-
forward in many RL tasks, including games where the ac-
tion set of the original problem set is limited, and there ex-
ists a natural label of each of the possible actions. Though
for many domains like robotics, the actual action space may
be too complex (or even continuous) for the human to iden-
tify each action name. Instead, the human may think about



the agent’s action in terms of temporally extended actions
(compared to the original actions). So instead of a series
of joint angle changes, they may instead think in terms of
abstract actions like picking and putting down objects. The
person could communicate such abstract actions by labeling
a set of agent demonstrations or by even providing demon-
strations for each action. In either case, one could obtain a
sequence of trajectories that correspond to each higher-level
action, and one could learn classifiers that map trajectories
to high-level action labels.
Fluents The other vocabulary item of interest to us is the
state fluents. This could consist of propositional or relational
factors the user believes is relevant to the given task. In the
case of propositional fluents, the user could specify the set
of important fluents to the system by providing a set of states
where the fluent is true and a set of states where the fluent
is false. These examples could then later be used to train
classifiers for each concept. For relational concepts, the user
could start by labeling relevant objects and then, similar to
the propositional case, provide positive and negative exam-
ples for each predicate of interest.

Note that a core flexibility provided by the setting is the
fact that it allows the original vocabulary set provided by the
user to be incomplete. This makes it a fundamentally dif-
ferent enterprise from all the other works that try to force
the decision-making algorithms to use interpretable features
(c.f (Koh et al. 2020) for single-step decision making, and
(Lin, Lam, and Fern 2021) for sequential problems). On the
one hand, these methods can guarantee that the system is
considering these features, on the other, they are also inher-
ently limited by the original vocabulary set. It can do no bet-
ter than what is possible under the original vocabulary set.
In contrast, under this method, the system is free to choose
the best representation of the problem that allows it to come
up with solutions efficiently. While this is still a widely de-
bated topic, at least the dogma in mainstream RL seem to be
that while symbolic representations are useful for end-users
to understand and interact with the system, forcing the sys-
tem to reason over human-engineered representations and
knowledge would hamper the system in many practical sce-
narios as they preclude the use of more general and scalable
methods (c.f (Sutton 2019; Silver et al. 2021)). In this case,
vocabulary is only used for explanations. Additionally, given
the fact that the system has access to the more complex in-
ternal model, the explanatory system is also able to tell when
the given vocabulary set is insufficient to explain the given
decision. Once the system has detected this, it can query the
user for more vocabulary items. We would expect the system
should to do it in a directed way, though performing directed
concept acquisition is very much an open problem.

3.2 Model Learning
The next important aspect of the entire process is to take the
vocabulary item and try to build a symbolic approximation
of the overall model. There are multiple ways one could
go about learning the models. One might be to generate a
bunch of plan traces, use the learned vocabulary items to
match into symbolic terms, and then use any of the existing
model learning methods (c.f. (Stern and Juba 2017)) to learn

the final model. Alternatively, one could also employ a more
active learning process in which the agent actively interacts
with the environment until it finds a model that meets the
required criteria (this is similar to the strategy employed
by (Sreedharan et al. 2020)). Given all the existing work,
we won’t delve too much into the learning problem itself
but rather look at some of the more unique possibilities that
arise in this specific problem setting.
Local Approximations: While there aren’t many expla-
nation generation methods for sequential-decision making
problems that look at post hoc explanations (particularly
ones that try to build alternate models). Post hoc repre-
sentation learning is a very popular method in generating
explanations for single shot decisions (Lakkaraju, Adebayo,
and Singh 2020). A common technique used by many
of these methods to simplify the explanations is to focus
on creating local approximations of the original models.
Popularized by (Ribeiro, Singh, and Guestrin 2016), under
this technique, rather than generating post hoc models that
try to approximate the full model, they try only to capture
the behavior of the model in a region of interest over the
input space. Usually, this may correspond to data points
close to the one that needs to be explained. We can translate
the idea of local approximations also to our setting, where
we can choose to learn a symbolic model that approximates
the true model only for a subset of states and actions. The
next natural question would be how to decide this set of
actions. One approach would be to follow (Ribeiro, Singh,
and Guestrin 2016) and the earlier machine learning expla-
nation works and choose distance as the deciding factor.
In particular, consider only states within some distance
from the initial state or the states in the current plan, and
consider only actions that are possible in those states. A very
natural distance measure for planning problems would be
reachability or, in particular, reachability within a specified
number of steps. Though rather than just blindly focusing
on reachability/distance, one could also select the state and
action subset more effectively if we are aware of the user’s
intentions for asking the query. For the previously discussed
use case, if we restrict reachability to only state that are part
of screen 1, the precondition becomes not next to skull (as
Joe can’t acquire a sword in that screen).
Learning Abstract Models vs Model Components: Un-
like the traditional use cases of learning planning models,
here, we may not need to learn the entire model. Instead, de-
pending on the explanatory query, we may need to only learn
an abstract version of the model or even just identify parts
of the model. For example, (Sreedharan et al. 2020) looks
at identifying explanations meant to refute alternate plans
provided by the user. In this case, they identify only the re-
quired preconditions and an abstraction of the cost functions
needed to refute the user queries.
Post Hoc Explanatory Confidence: Another important
factor that is worth considering in this setting is measuring
how accurately the learned model approximates the system
model. Unless the explanatory system is exhaustively
generating all possible transitions and behavior possible in
the region of interest, there is a possibility that the learned
model may not accurately reflect the actual behavior. If



the model is wildly different from the true model, it could
end up inducing incorrect beliefs in the end-user about
the task and the system’s understanding of the task. One
way to try addressing such issues may be to provide the
system with the ability to quantify its uncertainty about the
model. Then it could use those measures to decide when
it may be safe to provide explanations or even surface its
uncertainty to the end-user. While there are some existing
works on quantifying PAC guarantees for model learning
(Stern and Juba 2017), this generally is an underexplored
problem. Additionally, if the learned vocabulary mapping
(from system’s representation to user’s vocabulary) is noisy,
the symbolic traces that the explanation system collects
may be incorrect and this should also be reflected in the
confidence it assigns to the learned model. (Sreedharan et al.
2020) presents some methods for creating such confidence
measures under certain assumptions about the task.
Reusing Previously Learned Model Components: In the
end, interacting with the complete model will be an expen-
sive process and we would want to avoid performing this un-
less it is completely required. This means, being able to rec-
ognize cases where any new queries raised by the user can
be resolved by a previously learned model representation.
Also developing methods that are able to stitch together pre-
viously learned model components and abstractions to more
complete model representations and checking if they suffice
to address the user queries.

3.3 Explanation Generation
We won’t delve too much into the exact explanation methods
that could be used to generate the target explanations. But
will bring up the two factors that may be worth considering
in this question
Explanatory Queries: As mentioned earlier the model
learning is driven by the explanatory query. Keeping with
most mainstream works in XAIP, we will assume most of
these queries are contrastive in the sense that the user is try-
ing to understand why a specific decision was made against
(a possible alternate decision the human was expecting).
Though in this case, we have to make an additional level
of distinction, namely what the explanation is trying to es-
tablish, why the current decision is better than the alterna-
tive raised by the user, or why and how the system decided
to make the decision. This was a distinction established in
(Langley 2019), where they refer to the former as preference
accounts and the latter as process accounts. The post hoc ex-
planatory methods are particularly well suited for preference
accounts. As they can be evaluated on these post hoc models
independent of the original decision-making process used to
derive the system’s decisions.
Identifying When the Model is Incomplete: The next im-
portant feature required for the explanation generation, is to
explicitly allow for the fact that the model being used to gen-
erate the explanation may be incomplete. So the explanation
generation method needs to be able to identify cases where
the current learned model may be incapable of generating
the required explanation and as such the system needs to
query the user to acquire new vocabulary items which may
be used to augment the given model. Access to a system

model could be extremely useful in such scenarios, particu-
larly for evaluating user-specified alternatives in the context
of contrastive queries. As the system model could be used to
test the validity and cost of these alternatives.

4 Research Challenges and Opportunities
This section will discuss some of the big open questions and
research opportunities posed by this direction. This is in ad-
dition to smaller problems like tailoring explanations to spe-
cific types of models that may be popular in fields like RL,
considering stochastic models, etc.
Acquiring new Concepts: One of the open challenges is to
address cases where the original vocabulary set is incom-
plete. The agent now needs to query the human to expand
its vocabulary. One obvious strategy may be to ask for more
concepts, though this could be a very inefficient way to col-
lect more concepts as the ones the human may provide may
be completely irrelevant to the given problem. An advan-
tage the agent has is that it has access to its own representa-
tion of the task and thus may be able to provide some hints
to the human as to what concepts may be relevant to the
current query. One way to accomplish this may be to lever-
age low-level visual explanations (when a common visual
channel is available). While we are unaware of any works
in sequential-decision explanation that have leveraged such
methods to collect concepts, a closely related work that has
looked at collecting such concepts is (Hamidi-Haines et al.
2018), where they developed an interface that allows users
to name certain regions of the state highlighted according to
their relevance to the decision-making process. One would
want to build on such interfaces for more general sequential
decision-making systems and also possibly relax various as-
sumptions like the fact that each concept corresponds to spe-
cific parts of the image. Another possibility is to revisit the
end-to-end model learning methods similar to (Bonet and
Geffner 2019), that also learns symbols. An open research
question here is developing methods that check if any of the
automatically discovered concepts or composition of such
concepts could potentially map to concepts at the user’s end.
Additionally, we could also check if one could introduce in-
ductive biases into these systems that allow the generation of
naturally interpretable concepts ((Yeh et al. 2020) discussed
how the assumption of the locality could be used in single-
shot decisions).
Incorporating Possible Noisy Decision-Making: One of
the questions that we have ignored in this paper is whether
the agent’s decision-making process can correctly use their
internal model. Even in the best case, the symbolic mod-
els will only reflect what is present in the internal model.
Though given the realities of the state of the art RL meth-
ods, in many cases, it is hard to guarantee that the decision-
making processes can correctly use their own internal mod-
els to generate their decisions. If, in fact, these explanations
are presented as the reasoning behind the agent’s decisions
(i.e., a process account per (Langley 2019)), it could lead
to the user forming incorrect beliefs about the agent’s rea-
soning capabilities. It is still very much an open question
how we could leverage the specifics of the agent’s decision-
making processes to select more precise explanations. Some



initial strategies we could employ include performing addi-
tional tests like checking whether perturbation of some con-
cept identified as part of the explanation in the current state
leads to the system choosing a different action, or using the
system’s own internal representations (for example, looking
at intermediate layer activations in the case of neural net-
works) to build concept classifiers, etc.
Allowing For Collaboration: We strongly believe that ex-
planatory systems should be evaluated in the context of the
overall application. A common use case for such systems
may be scenarios where the user and the system are collab-
orating to come up with better solutions (as in the case of
iterative planning (Smith 2012)). In the most general case,
we would want this to be a bidirectional interaction wherein
both the agent and the human can influence each other’s be-
liefs on what constitutes an ideal solution. While there have
been recent works on developing methods that allow peo-
ple to specify preferences/objectives for agent behavior (c.f.
(Illanes et al. 2020; De Giacomo et al. 2019)). They have
generally focused only on developing interfaces to let the
user specify constraints over the behavior the agent can gen-
erate using its internal models. For these systems to truly
successful, we need to not only allow the agent to provide
explanations over why it may be performing certain behav-
iors, in terms of its beliefs about the model of the task, but
also provide the user the ability to override the agent’s belief
about the task. We strongly believe that symbolic models can
provide us with an interpretable interface to facilitate such
bidirectional interactions. However, it’s very much an open
question on how to effectively take these post hoc model up-
dates and fold them into the agent’s decision-making process
that may be using inscrutable models.
Few Shot Learning of Concepts: Unless the concepts are
being pre-specified by a domain expert/designer where they
could invest in collecting a large number of examples, these
concepts would need to be learned from a few examples. If
the agent is using learning methods that can compute its own
representations of the state for coming up with decisions.
Such simplified representations could then be used as the
input to our vocabulary item classifiers.
Teaching Concepts: One of the possible scenarios we have
not quite considered in this paper is what happens when the
human’s vocabulary has no concept that could potentially
explain the current decision. For example, there may exist
no concepts that can describe the kind of patterns AlphaGo
may be looking for to decide novel moves. In such cases, the
agents would need to teach the human new concepts. We are
unaware of any works that have even begun to look at these
problems, though one can imagine effective solutions to this
problem would need to make use of strategies from intel-
ligent tutoring systems (ITS) (Anderson, Boyle, and Reiser
1985), natural language generation, and many other subar-
eas of AI.
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