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Abstract—In scenarios where a robot generates and executes
a plan, there may be instances where this generated plan is less
costly for the robot to execute but incomprehensible to the human.
When the human acts as a supervisor and is held accountable
for the robot’s plan, the human may be at a higher risk if
the incomprehensible behavior is deemed to be infeasible or
unsafe. In such cases, the robot, who may be unaware of the
human’s exact expectations, may choose to execute (1) the most
constrained plan (i.e. one preferred by all possible supervisors)
incurring the added cost of executing highly sub-optimal behavior
when the human is monitoring it and (2) deviate to a more
optimal plan when the human looks away. While robots do
not have human-like ulterior motives (such as being lazy), such
behavior may occur because the robot has to cater to the needs
of different human supervisors. In such settings, the robot, being
a rational agent, may take any chance it gets to deviate to a
lower cost plan. On the other hand, continuous monitoring of
the robot’s behavior is often difficult for humans because it
costs them valuable resources (e.g., time, cognitive overload, etc.).
Thus, to optimize the cost for monitoring while ensuring the
robots follow the safe behavior and to assist the human to deal
with the possible unsafe robots, we model this problem in the
game-theoretic framework of trust. In settings where the human
does not initially trust the robot, pure-strategy Nash Equilibrium
provides a useful policy for the human.
In our setting, the formulated game often lacks a pure strategy
Nash equilibrium. Thus, we define the concept of a trust
boundary over the mixed strategy space of the human and show
how it helps to discover monitoring strategies that ensure the
robot adheres to safe behavior and achieves the goal. With the
help of human studies and task-planning scenarios, we justify
the need for coming up with optimal monitoring strategies (in
supervision scenarios) and showcase their effectiveness.

I. INTRODUCTION

In a multi-agent scenario involving a robot (R), who is
making and executing a plan (or policy) in the world, and
a human supervisor (H), who monitors the robot’s action
and is held responsible for R’s behavior, the notion of trust
becomes key for successful interaction. When the supervisor
trusts the robot, they do not need to always spend their valuable
resources such as time and cognitive effort in monitoring or
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intervening in the robot’s plan (or execution of these plans).
On the other hand, when trust does not exist, conventional
wisdom guides the human to continuously monitor the robot
(making it resource-intensive for the human). In this paper, we
seek to challenge this idea and show that a human can consider
resource-efficient monitoring strategies in the latter case.

Existing works have considered longitudinal interaction
where they model the human’s trust as a variable and leverage
it to guide the robot’s behavior [2, 17]. These methods guide
the robot’s behaviour and are effective when the robot’s sole
objective is to help the human supervisor. With the advent
of autonomous cars, robots-as-a-service, such assumptions
become too strong as the robots might have other considerations
(saving fuel, maximizing profit for service-provider etc.) than
simply pleasing a single human supervisor. In such scenarios,
a supervisor may land up in an interaction with a robot without
any previous history of interaction. Further, the worker robot
may not be aware of the human’s exact model MR

H that
describes the safety requirements the supervisor has in mind.
Hence, when the human does not observe the robot’s plan or
its execution, the robot may choose to execute a less costlier
plan that is deemed unsafe (by the human). In such scenarios,
we formally model the inference problem related to the finding
a monitoring strategy for the human supervisor that saves their
valuable resources (time, cognitive overload) while ensuring
that the robot sticks to the expected behavior and achieves the
goal, which means it provides an assistant to the human that
will help them deal with the possible unsafe robots.

Specifically, we introduce a notion of trust that a human
supervisor H places on a worker robot R when H chooses
to not observe R’s plan or its execution by modeling the
interaction in a game-theoretic framework of trust motivated
by [12]. In our case, the robot is unaware of the human’s exact
model MR

H , but has knowledge about all the possible setsMR
H

of safety constraints the human might have, i.e., MR
H ∈MR

H .
This uncertainty about the human’s model that R has can be
reflected in the utilities of the players, making our formulated
game a Bayesian one. Without prior interaction (and thus, a
lack of trust) if H does not observe R, R will always deviate
to a plan that is less costly for itself. In such scenarios, we
show that H can devise a probabilistic observation strategy
that ensures (1) R does not deviate away from executing the
safest plan (i.e., executable in all the models ofMR

H ) and also,
(2) H saves valuable resources (such as time, effort, etc.) as



opposed to continually monitoring R. So, we propose a novel
type of assistance which is assisting a human with when to
supervise in order to set the right robot incentives.

Given that in any monitoring scenario humans have to come
up with a supervision strategy, we conduct human studies to
figure out the natural strategies that they would follow. First, we
show that in such supervision or monitoring scenarios, humans
may either be risk-averse (ensuring that the robot does the
right thing, no matter the monitoring cost) or risk-taking (in
the hope to minimize their cost, will choose to cut down their
monitoring time). These results justify the Bayesian modeling
of our human player in the game-theoretic framework for the
supervision scenario. Second, we show, in contrast to work
in existing human-aware planning scenarios where humans
are asked to monitor the robot all the time [9, 3], humans
often deviate to more split-time strategies where some of the
time, originally meant for monitoring, can be used for other
tasks and still ensure the robot adheres to constraints. Thus, it
makes sense to analyse the supervision scenario formally and
provide human agents with optimal monitoring strategies that
let them maximize their utility while ensuring the supervised
agent R does not execute behavior that is either unsafe or
fails to achieve the goal. Lastly, via analysis of answers to
subjective questions, we show that participants who undertook
the study prefer a software that (can use our game-theoretic
formulation and) provide them with an optimal monitoring
strategy which ensures safe behavior.

II. RELATED WORK

Our work is situated in the middle of the spectrum that ranges
from fully cooperative settings to fully-adversarial ones. In
fully-cooperative settings, the robot only considers the human’s
goals and thus, can only exhibit undesirable behavior because
of either impreciseness in or differences between its own model
MR and the human’s expectation MR

H .
In motion and task planning, researchers argue that if the

robot follows a plan that adheres to the human’s expectation,
i.e., is optimal in MR

H ; then these plans are deemed to be
explicable [18], legible [3], or adhers to social norms [8]. They
assume that the need for R to be explicable, legible, etc. is
because the human is continuously observing or monitoring
the robot. Although they do not explicitly discuss, in scenarios
where the human is not observing the robot, it may deviate
to a plan that is optimal in MR. In our setting, this deviation
can result in the violation of safety constraints and hence we
want to ensure that even when the human is not spending all
their resources in observing R, the robot does not deviate from
the safe plan πs. Furthermore, the existing works [18, 3, 8]
assume that all the humans who observe the robot have the
same expectation, i.e., MR

H is a singleton set, which is either
fully known beforehand or can be easily learned. Some recent
works, such as [4], that try to address this concern, consider
the imprecise specification of the human’s reward (which
can be a part of MR

H ). Then they show how it results in
the robot executing undesired behaviors that may be deemed
unsafe. Eventually, they conclude that some uncertainty about

MR
H may result in R doubting its current behavior as unsafe

and in turn, letting the human take control (switch it off) if
necessary. Unfortunately, they consider that R’s objective is
solely to maximize the human’s reward and thus, robots have
no reason to think of other rewards. Although the robot many
not have ulterior motives like human agents, the assumption
falls flat when the robot is (1) rented out as a service by a
third-party agent for helping a particular human (autonomous
car offered by ride-sharing apps), or (2) is catering to the
needs of multiple supervisors. In such scenarios, a single
human’s reward is not its sole reward anymore. We seek
to address such scenarios in this work. Although, similar to
our work, researchers have looked at the idea of considering
multiple human models, they mostly address the problem
generating robust explanations [16]. Furthermore, the use
of communication (when possible) is an effective method
in cooperative settings, such as the communicates implicit
information [6], preferences and constraint [7], however, there
exists the non-cooperative scenarios where the question of
trust is more significant. In such settings, communicating the
constraints does not necessarily guarantee that the robot will
adhere to them (as they may have other constraints imposed
by third-party supervisors).

Given that we are trying to find a monitoring strategy for
the human supervisor so that the robot always chooses to
execute πs even if there exists uncertainty about the human’s
model, we should also consider works in the other end of
the spectrum that deal with adversarial monitoring in physical
[11, 15] and cyber domains [14, 13]. A key difference with
these works is that they lack any notion of cooperation. In our
case, if the robot R is unable to achieve the (team) goal due
to violation of certain constraints and insufficient monitoring,
it results in an inconvenience for H too, who will then be
held responsible for their failure to (1) ensure safety or (2)
achieve the goal. Beyond these, our framework should be seen
as a first-step towards repeated game modeling that will allow
us to consider the development of trust on the robots and
eventually, finding methods to incentive the robot to identify
and respect that trust. Such intentions are clearly missing in
adversarial settings. Lastly, the notion of mixed strategies that
are used in most of these works does not sit well with our
scenario because the probabilistic guarantees about the robot
behaving safely might not be an acceptable solution in our
settings. Thus, we can conclude that although our problem
shares properties of both fully cooperative fully and adversarial
settings, it exhibits significant differences to reside in the middle
of the aforementioned spectrum.

III. GAME THEORETIC FORMULATION

Before describing the game-theoretic formulation–the actions
and the utilities of the agents– we first clearly highlight the
assumptions made about the two agents.

A. Assumptions about the Agents

The human H: who is a supervisor in our setting, has the
following characteristics:



1) H has a particular model of the robot R, denoted as MR
H

that belongs to some set of possible models MR
H .

2) Upon observation of the plan that R comes up with or
its execution, if H believes the plan is risky (i.e., is
inexecutable or unsafe in their model MR

H of the robot),
H can stop the execution at any point in time. If H stops
the robot R from executing its plan, H incurs some cost
of inconvenience for not having achieved the team goal G
or because H should stop the robot and make the robot to
do the safe plan. This seems pragmatic because H , being
the supervisor, will be held responsible for it.

3) H has a positive cost for observing the robot’s plan or
the plan’s execution.

The Robot R: who is the agent being monitored, has the
following capabilities and assumptions associated with it:

1) R is uncertain about the human’s model of it, i.e., MR
H ,

but knows that it belongs in the set of possible models
MR

H .
2) R, given a sequential decision making problem, can come

up with two plans– (1) a safe plan (πs) that is executable
in all models ∈ MR

H and (2) a risky plan (πpr) that
is executable in a subset of MR

H but in-executable (or
unsafe) in the other models.

3) There are costs for coming up with the plans πs and πpr
and executing them. Also, since R may have to work on
other goals or cater to the needs of other supervisors, it
would like to execute πpr if it can get away with it.

4) It incurs a cost for not achieving the team’s goal G. This
happens when the human observes the plan or execution
and stops it midway (due to safety concerns).

5) The robot is not malicious and thus, does not lie. It won’t
bait-and-switch by showing one plan to H (that looks
safe) and then executing another.

With these assumptions in place, we can now define each
players’ pure strategies and their utility values which will
encode the uncertainty about the types of human supervisor,
turning the game a Bayesian one.

B. Player Actions

In the normal form game matrix shown in Table I, the row-
player is the robot R who has two pure strategies to choose
from– the plans πpr and πs (as described above). The column
player is the human H who has three strategies– (1) to only
observe the plan made by the robot OP,¬E and decide whether
to let it execute (or not), (2) to only observe the execution
O¬P,E and stop R from executing at any point, and (3) not to
monitor (or observe) the robot at all (NO-OB).

A few underlying assumptions that are inherent part in our
action definitions are (1) the robot cannot switch from a plan
(or a policy) it has committed to a different one in the execution
phase and (2) the human only stops the robot from executing
the plan if they believe that the robot’s plan does not achieve
the goal G as per their actual model, i.e. the robot’s plan is
deemed in-executable (or unsafe) given the domain model MR

H .

C. Utilities

The utility values for both the players are indicated in the
game-matrix shown in Table I. In each cell, corresponding to
the pure-strategy pair played by the two players, the numbers
shown at the bottom in black are the utility values for R while
the ones at the top in blue are the utility values for H . We now
describe the utilities for each player in our formulated game
and later, in the experimental section, talk about how they can
be obtained in the context of existing task-planning domains.

Robot’s Utility Values: We first describe the notation
pertaining to the robot utilities and then use them to compose
the utilities for each action pair.

CR
P (π) Cost of making a plan π.

CR
E (π) Cost to robot for executing plan π.

CR
G̃

Penalty of not achieving the goal G.

Note that we use the variables C to represent a non-negative
cost or penalty. Thus, the rewards for the robot R shown in
Table I have a negative sign before the cost and penalty terms.
As the human may choose to stop the execution of a plan
midway, the robot might have executed a part of the original
plan. We denote this partial plan by π̂pr. Given this, the term
CR

E (π̂pr) represents the cost of executing the partial plan.1

The uncertainty in the robot’s mind as to whether a particular
supervisor type will let it execute the plan πpr to completion can
now be captured using the variable CR

G̃
that represents the cost

of not achieving the goal. Before we discuss how one can model
the variable CR

G̃
, let us first briefly talk about the robustness

r of the plan πpr. The parameter r ∈ (0, 1] represents the
fraction of models in MR

H where the plan πpr is executable
(and thus, safe). A way of obtaining this value for deterministic
planning problems could be the use of model counting [10].
For a given r, an idea to model the cost associated with not
achieving the goal is to consider CR

G̃
as a random variable

drawn from the Bernoulli distribution s.t. CR
G̃

is a non-zero
penalty if the plan is not robust enough for a given human
(with probability 1− r) or zero if it is (with probability r).

Whenever the cost of not achieving the goal is equal to
zero, it means that the robot’s plan πpr (or its execution) was
observed by H and not stopped by them. If the human chooses
to observe the plan before execution, then the cost incurred by
the robot for executing the plan πpr can be represented as,

CR
Ẽ
(πpr) =

{
CR

E (πpr) if CR
G̃

= 0

0 o.w.
(1)

If the supervisor H , on the other hand, chooses to monitor the
execution directly, then the cost of execution would be,

Ci
E(π̃pr) =

{
Ci

E(πpr) if Ci
G̃
= 0 i ∈ {R,H}

Ci
E(π̂pr) o.w.

(2)

In the formulated game, the robot has to come up with a plan
(even though it may not be allowed to execute it). Thus, the

1Depending on where the human will stop the robot, the cost for the partial
plan is different.



OP,¬E O¬P,E NO-OB

πpr

−CH
P (πpr)− IHP (πpr),

−CR
P (πpr)− CR

Ẽ
(πpr)− CR

G̃

−CH
E (π̃pr)− IHE (π̂pr),

−CR
P (πpr)− CR

E (π̃pr)− CR
G̃

−V H
I (πpr),

−CR
P (πpr)− CR

E (πpr)

πs

−CH
P (πs)

0︷ ︸︸ ︷
−IHP (πs),

−CR
P (πs)− CR

E (πs)

−CH
E (πs)

0︷ ︸︸ ︷
−IHE (π̂H),

−CR
P (πs)− CR

E (πs)

0︷ ︸︸ ︷
−V H

I (πs),

−CR
P (πs)− CR

E (πs)

TABLE I
NORMAL-FORM GAME MATRIX FOR MODELING THE ROBOT-MONITORING SCENARIO. R (H ) IS THE ROW (COLUMN) PLAYER.

cost to come up with a plan (πs or πpr) has to be considered
for all the utility values (in the respective rows). In the case
of πs, since it is executable in all the models of MR

H , there is
no chance that H will stop its execution and thus, no chance
of incurring a penalty for not achieving the goal.

Note that the cost of executing a plan that adheres to all
the models in MR

H is going to be high because it respects all
the constraints enforced by all the model (corresponding to
all possible humans). On the other hand, executing a plan πpr
that respects constraints corresponding to a subset of models
in MR

H would be less costly to execute. Thus, it is natural to
assume CR

E (πpr) ≤ CR
E (πs).

Similarly, coming up with πpr may often be easy if the
value of r is small while coming up with the plan πs that
is guaranteed to work in all the models of MR

H may take
a considerable longer amount of time. Hence, even for the
planning time, we make the logical assumption that CR

P (πpr) ≤
CR

P (πs).
Human’s Utility Values: We first describe the notations

and then use them to obtain the various utilities for the human.
CH

P (π) Cost w.r.t. human’s resources of observing the
plan π made by the robot.

CH
E (π) Cost w.r.t. human’s resources of observing the

robot execute the plan π.
V H
I (π) Cost incurred by the human, who was responsible

for the robot’s plan for violating a constraint that it
had set for the robot to follow and being ignorant
about it. Note that V H

I (πs) = 0
IHP (π) Inconvenience to the human if they see a plan

that it cannot let the robot execute. Note that
IHP (πs) = 0.

IHE (π) Inconvenience to the human if the human observes
the execution of an unsafe plan and it has
to intervene or stop from execution. Note that
IHE (πs) = 0.

Note that, in our setting, the human supervisor H will be held
responsible for not achieving the goal. This happens when
H has to stop the robot from executing the plan πpr. The
inconvenience cost can be represented using a negative utility
for the human and is denoted using the last two notations.

In our setting, after the robot comes with a plan, unless it
is πs, the human H is not sure if the robot’s strategy will be
executable (or safe) in their model MR

H because the plan πpr
is executable in a subset of models which may not contain

H’s model MR
H . Thus, they have some uncertainty over the

variables V H
I (π), IHP (π) and IHE (π). Thus, similar to the robots

penalty, they can be represented as random variables sampled
from a Bernoulli distribution.

With probability (1− r), when the robot chooses to come
up (and then execute) the plan πpr, if the human does not
observe either of the two processes, i.e., chooses NO-OB, then
it is natural to assume that the human, who is going to be held
responsible for the plan will eventually find out that constraints
set by them was violated. The cost incurred by the supervisor in
this case (i.e. R plays πpr and H plays NO-OB), should be the
highest because (1) the robot, without H’s knowledge, violated
some safety or social norm (that was necessary for a plan to
achieve the goal in MR

H ), (2) H will be held accountable for
it, and (3) blamed for not fulfilling their supervisory duties.
Thus, we have,

V H
I (πpr) > CH

P (πpr) + IHP (πpr) (3)
V H
I (πpr) > CH

E (π̃pr) + IHE (π̂pr) (4)

We also consider the cost of observing the execution of a plan
is greater than cost of observing the plan, i.e.

CH
E (π) > CH

P (π) (5)

and the inconvenience caused by execution of a probably
risky (partial) plan is greater than inconvenience cause by
just observing the plan because no damage has yet been done.
Thus,

IHE (π̂pr) > IHP (πpr) (6)

Lastly, note that when the robot comes up with a plan πs
that is executable in all the models of MR

H , the inconvenience
(IHP (πs) and IHE (πs)) and responsibility (V H

I (πs)) costs are
zero. This is indicated used curly braces in Table I.

IV. GAME-THEORETIC NOTION OF TRUST

In this section, we first define a notion of trust in the
formulated game shown in Table I. H has three actions and as
one goes from left to right, the amount of trust H places in
R, as defined in [12], increases. Consider the human chooses
not to observe the robots plan or its execution, i.e., chooses
NO-OB. Clearly, H exposes itself a vulnerability because if
R comes up with and executes πpr, it can result in H getting
a high negative reward V H

I . On the other hand, the robot
may choose to respect the human’s trust by selecting πs and



therefore, not exploit the vulnerability that presents itself when
the human plays No-OB. On the other hand, if the human
chooses to observe the plan (OP,¬E), the human is exposed to
the least amount of risk because the robot plan, even before it
can execute the first action, is verified by the human.

Note that H incurs a non-negative cost when playing the
action OP,¬E because it has to spend both time and effort in
observing the robots plan and then deciding whether to let it
execute. In scenarios when H cannot fully trust the robot and
they have to play OP,¬E or O¬P,E , they will incur the cost
of constant monitoring. We now discuss this case of no-trust
in our game and see if it possible to minimize this cost.

A. The No-Trust Scenario

In this setting, H should never play an action that exposes
them to a risk of a high negative utility because it does not trust
R (who will play πpr if H plays NO-OB). In such scenarios, if
there exists a pure-strategy Nash Equilibrium, then the players
should play it because neither of the players can deviate to get a
better utility [12]. In our setting, this depends on the value of r,
if r is high and close to 1, it means that for most of the models
MR

H ∈ MR
H , the plan πpr is executable. Given we consider

a Bayesian game, in order to have the Nash Equilibrium we
should satisfy the following condition over the expected utility,

(1− r)V H
I (πpr) < CH

P (πpr) + (1− r)IHP (πpr)

CR
P (πpr) + (1− r)CR

G̃
+ rCR

E (πpr) < CR
P (πs) + CR

E (πs)care (7)

As r → 1, we can guarantee that (πpr, NO−OB) is the Nash
equilibrium because πpr is executable in a large majority of
the models in MR

H . In this case, with high probability, the
human observer (whose model MR

H is sampled from the set
MR

H ) has no preference about the robot using πs over πpr.
Thus, with high probability, they will not incur V H

I . Therefore,
it makes sense for the robot R to choose πpr that is less costly.

Note that the above scenario is where r is closer to 1 is
highly unrealistic. It can only occur in domains where executing
πpr does not result in catastrophic circumstances or lead to
in-feasibility, implying the distinction between πs and πpr is
hardly present. In most real world settings, this would hardly
be the case (i.e. r will be much lower than 1), leading to the
following proposition.

Proposition 1. The game defined in Table I has no pure
strategy Nash Equilibrium where πpr is not executable in
some of the models.

Proof. The formulated game in this paper is a Bayesian game
with two player types for the human. The first type is the
one where πpr is executable in the model MR

H in MR
H , so

CR
G̃

= IHP (πpr) = IHE (π̂pr) = V H
I = 0, and the second type

is represents the set of humans whose models are in MR
H and

πpr is not executable in them. Consequently, CR
G̃

, IHP (πpr),
IHE (π̂pr) and V H

I 6= 0. Given a pure strategy Nash Eq. (as per
equation 7) only exists for the former, this game has no pure
strategy Nash Equilibrium in the second case (with probability
of 1− r, as r is also the probability of former type).

Absence of Pure Strategy Nash Equilibrium: The absence
of a pure-strategy Nash eq. makes it difficult to define a
human’s best course of action in the no-trust setting [12].
Furthermore, existing works that assume the human should
always monitor the robot’s plan or behavior to ensure the robot
plan is explicable [18] or legible [3] (similar to πs in our
setting) fail to account for the human’s monitoring. This is
unrealistic (rather, too costly) for H to always select OP,¬E

or O¬E,P in real-world settings. Furthermore, the notion of
a mixed-strategy (Nash) equilibrium is inappropriate in our
setting because a probabilistic play by R, i.e. choosing a risky
plan with some non-zero probability cannot guarantee safety
or feasibility for all human supervisors. Thus, we devise the
notion of a trust boundary that allows the human to play a
mixed strategy that reduces their cost of monitoring but ensures
the robot always sticks to selecting (and executing) πs.

Trust Boundary: Consider a human chooses the mixed
strategy ~q = [(1 − qE − qN ), qE , qN )]T over the actions
OP,¬E , O¬P,E and NO-OB respectively. First, let us discuss
what it means intuitively if all the values are non-zero. The
human probabilistically chooses to look into the plan or
execution of a plan done by the robot they are supervising. In
many human-human scenarios, such uncertainty (eg. parents
may come back) on the part of the supervising agent (say,
parents) might instill a fear in the supervised agent (say,
children) of getting caught if the latter choose to betray the
supervisor (say, watching TV (πpr) instead of studying (πs)
when the parents are out). Note that a strategy in qN = 1
will always result in the robot choosing the probably risky
plan (especially in our single-step game). Thus, in order to
ensure that the robot cannot deviate away from the making
and executing πs, we have to ensure that the expected utility
(U ) for the robot given ~q is greater for πs than for πpr. Using
the values defined in Table I, this can be formally stated as
follows.

E~q[U(πs)] > E~q[U(πpr)]⇒ (8)

r −CR
P (πs)− CR

E (πs) > (−CR
P (πpr)− CR

G̃ − C
R
Ẽ (πpr))

×(1− qE − qN )

+(−CR
P (πpr)− CR

E (π̃pr)− CR
G̃)× qE

+(−CR
P (πpr)− CR

E (πpr))× qN

where E~q[U(π)] denotes the expected utility of the robot under
the human’s observation policy (or mixed strategy) ~q if it
chooses to make and execute the plan π. Note that the equation
is linear w.r.t. the variables qN and qE . Thus, there will be
a region on one side of the linear boundary where the robot
always executes πs.2

V. EXPERIMENTAL SETUP AND EVALUATION

The aim of this section is to first describe a task-planning
scenario in which we can compute the trust boundary and
then, perform human subject studies in a simplified version
of this supervision scenario. To do so, we initially describe
the robot-delivery domain that we will use throughout the

2In repeated interaction settings when the stakes are high or the change
in trust cannot be easily observed in a non-cooperative setting, our inference
method for finding the trust boundary (when no pure Nash exists) still works
while the increase/decrease of human’s trust can be modeled with the random
variable that is a part of the game-theoretic model.
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Fig. 1. The two plans, i.e the safe plan πs (left) and the probably-risky plan πpr (right) for the robot-delivery scenario.

section. While most motion planning scenarios only consider
the execution phase (rather than modeling both the planning
and execution stages separately), task-planning domains tend
to concentrate on the planning phase of the problem. Given
that our game-theoretic model accounts for both the stages,
choosing an existing domain, which renders itself naturally
to both the planning and execution phases, is a challenging
task. We choose the robot-delivery domain because (1) we
can use the task planning domain definition as-is, and (2) the
domain can be easily interpreted for the execution stage. This
gives a good scenario to model the no-trust case with a human
supervisor and a robot worker.

A. Robot Delivery Domain

We used a robot delivery domain [9] in which the robot
can collect and deliver parcels (that may not be waterproof) or
coffee by picking it from the reception desk and taking it to
a particular location. The robot in the PDDL domain has the
following actions: {pickup, putdown, stack, unstack, move}.

Problem Instance: The problem instance in our setting has
the initial setting where (1) the robot is standing at a position
equidistant to the reception and the kitchen, (2) there is a parcel
located at the reception that is intended for the employee, (3)
there is brewed coffee in the kitchen that needs to be delivered
in a tray to the employee. The goal for the robot is to collect
and deliver the coffee and the parcel to the employee.

Robot Plans: In Figure 1, we show two plans in which the
robot achieves the goal of collecting coffee from the kitchen
and parcel from the reception desk and delivers them to an
employees’ desk. In the plan shown of the left πs, the robot (1)
collects coffee, (2) delivers it to the employee, (3) goes back
along the long corridor to collect the parcel from the reception
desk and finally (4) delivers it back to the same employee. In
the plan on the right πpr, the robot collects coffee from the
kitchen, (2) collects parcel from the reception desk and puts
them on the same tray and finally, (3) delivers both of them
to the employee.3

3Given the (actual and the human’s) domain models and the problem instance,
these plans can simply be computed using available open-source software like
Fast-Downward or web-services like planning.domains.

B. Computing the Trust Boundary in a Task-Planning Scenario

In order to compute the trust boundary, we calculate the
utility values for our game leveraging Table I and the cost
incurred by R and H in this robot delivery domain. As we have
different types of costs for our game, we choose to normalize
all of them to be ∈ [0, 1] and then used a multiplicative factor
which represents the significance of each cost type.

In this example, if the robot makes πpr, it will be executable
(or safe) as per one of the two observers whose models make
up the set MR

H . Thus, the robustness for πpr is r = 1
2 = 0.5.

On the other hand, the plan πs is executable (and thus, overall
safe) in both the models in MR

H .
Robot Utility Values. We used the Fast Downward planner
[5] on the robot delivery domain [9] to find the execution costs
for R. For πpr with r = 0.5, it was (CR

E (πpr) =)10 while for
πs, it was (CR

E (πs) =)14. We note that the time for coming
up with the plan πs is 0.19s whereas it is 0.177s for coming
up with πpr on a machine with an Intel Xeon CPU (clock
speed 3.4 Ghz) and 128GB RAM. The unit for execution costs,
although not well defined in PDDL models can be a stand in
for the fuel costs used up by the robot while the planning costs
is measured in seconds. Thus, we first normalize the planning
cost and then choose an appropriate prioritization parameter
to compare the planning and the execution costs. We obtain
CR

P (πpr) = 3.54 and CR
P (πs) = 3.8. Lastly, the penalty for

not achieving the goal is a random variable with the Bernoulli

distribution of (1 − r) where CR
G̃

=

{
0 r

20 1− r
which is

double the size of the cost of execution in the non-zero case.
Given that the complexity of determining plan existence

for classical planning problems is P-SPACE [1], a legitimate
concern is how realistic is the idea of solving two planning
problems to obtain the utility values for our game. To avoid
this high computational cost, we can solve a relaxed version
of these planning problems to obtain an approximation for the
real plan cost. Note that this approximation in the utility space,
only necessary for large instances, can result in sub-optimal
monitoring strategies.
Human Utility Values. We have two possible supervisors who
have two different mental models. In one model, the second
plan πpr is unsafe because the coffee and parcel taken in the
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Fig. 2. An observation strategy in the trust region (shaded) ensures that the
robot sticks to πs. In contrast to observation strategies discussed in existing
works, one can reduce monitoring costs while ensuring explicable/legible/safe
behavior.

same tray runs the risk of the coffee spilling, thereby ruining
the package. In the other model, both plans are considered
safe. Lastly, note that the length of the corridor is a key factor
in determining how sub-optimal πs is for the robot to execute
when compared to πpr because, for πs, the robot requires an
extra trip back to the reception (i.e. two extra traversals of the
corridor).

We consider the cost for the human to observe the plan to be
proportional to the planning time for R because the plans that
took a longer time to be built will need H to spend a longer
time to reason about it correctness and/or optimality. Thus,
CH

P (πpr) = 0.885 and CH
P (πs) = 0.95. The cost incurred by

the human when they observe the execution of plan πs is 8
while CH

E (πpr) = 4 assuming that the cost of going through
the long corridor is 2 (note that the difference in observation
cost increases as this value increases). However, if the human
thinks carrying the parcel and the coffee in a single tray is
unsafe, the cost of the observation of the partial execution of
the plan is 1.5 because it will stop the robot as soon as it tries
to put them on the same tray. For the inconvenience costs, we
have the Bernoulli distribution in which the non-zero case is
the same as the cost of observation for the safe plan, since if
the robot does something unsafe the human have to stop it and
make it to do the safe plan. So, we have

IHP =

{
0 r

0.95 1− r
and IHE =

{
0 r

8 1− r

The cost V H
I ’s can be calculated as the model difference

between the least and most constrained models in MR
H

in terms of the number of preconditions and effects of
actions. Lastly, if an unsafe plan runs to completion, the
overall magnitude of this variable is higher. After calculation,

V H
I =

{
0 r

20 1− r
.

We can now define the utility matrix for the players (R,H)
as follows,
First type with probability 0.5:[

(−13.54,−0.885) (−13.54,−4) (−13.54, 0)
(−17.80,−0.95) (−17.80,−8.00) (−17.80, 0)

]

Fig. 3. Participant’s monitoring strategies across multiple trials. Trust boundary
indicated using the black vertical line.

Second type with probability 0.5:[
(−23.54,−1.835) (−26.54,−9.5) (−13.54,−20)
(−17.80,−0.95) (−17.80,−8.00) (−17.80, 0)

]
C. Trust Boundary Calculation

According to Proposition 1, this game does not have a pure
Nash Eq. strategy with probability 0.5. Therefore, we now find
the boundary in the space of mixed strategies for second type
of H who can choose to adopt which will ensure that the robot
always executes πs. To do so, we use the values defined above
and plug them into equation 8 and obtain,

10× qN − 3× qE − 5.74 < 0 (9)

In Figure 2, we plot the trust boundary represented by the lines
in Eqn. 9. The three black lines (sides of the larger triangle)
represent the feasible region for the human’s mixed strategy ~q.
Monitoring strategy in the shaded region guarantees the robot,
being a rational agent, executes πs. The strategy that optimizes
H’s monitoring cost and yet ensures the robot adheres to πs
lies on the trust boundary indicated using the red line. Note
that existing work in task [9] and motion [3] planning that
ensures explicable and legible behavior expects pure strategies
for observing the plan and observing the execution respectively.
This restricts the humans to only two corners of the feasible
strategy space, hardly optimizing the human’s cost.
D. Human Studies

Now, we describe our human-subjects study, which was
designed to evaluate whether (1) the human with the nature
of being risk averse or risk taking can find a good strategy to
cut-down the monitoring time while ensuring the constraints
structured manner from the robot and (2) the humans tend to
deviate to more split-time strategies where some of the time,
originally meant for monitoring, can be used for other tasks.
We specifically hypothesized the following:
H1: Humans (even when they are well-educated) hardly can
find an optimal strategy to monitor the robot, which cuts-off
their monitoring time and ensures safe behavior.
H2: The human tends to not monitor the robot all the time
and in the lack of good strategy the human may risk to gain
higher reward4.

4This will contradict the literature that assumes the human always monitors
the robot [18, 3]



Fig. 4. Average utility and its variance for each of the participants across
the five trials.

H3: Our game-theoretic formulation that infers optimal mon-
itoring strategy to the human is necessary and provide an
assistant to the human that will help them deal with the unsafe
robots.
We designed a user-interface to represent the robot-delivery
scenario. The participants in the study play the role of a student
in a robotics department who are asked to monitor the robot for
an hour. In order to make the monitoring action be associated
with a cost, we added a second task in which participants could
choose to grade exam papers (and get paid for it) instead of
just monitoring the robot. For the simplicity of understanding
and the scarcity of participants who have experience as a
professional supervisor, we combine the actions to monitor
the plan and monitor the execution as a single ‘monitor the
robot’ action. The other action ‘grade exam papers’ represents
the action to not-monitor the robot. As opposed to asking the
participants for mixed strategies over the two actions, which
is hard for them to interpret, we ask them to give us a time
slice for which they would choose a particular action (eg. 30
minutes to monitor the robot and 30 minutes to grade exam
papers). We provide the participants with their utility values
for their actions conditioned on the robot’s pure strategies (i.e.
the plans πs and πpr). We inform them that the robot may
have incentive to consider a less costly (but probably risky
plan) depending on fraction of time allocated for monitoring.
We let each participant do five trials and after each trial, the
overall utility based on the participant’s monitoring strategy
and the robot’s strategy is reported to them. The robot does not
adapt itself to the human’s strategy in the previous trial (which
intents to preserve the non-repeated nature of our game).

A pilot study was first run on 4 participants whose feedback
helped us fix several issues in the interface that inhibited
clarity. We then collected data by asking 32 participants to
undertake the study. We obtained consent from each of the
participants to use their data and ensured that no group of
participants colluded or discussed the study results before
their study finished. The participants of this study were all
graduate students across various engineering departments at
our university. The maximum time taken by a participant to
complete the study was 12 minutes while most participants
completed it within 5 minutes.

Aggregate Results – Changes in Monitoring Strategy
across Trials: Note that a participant, given the information on
the interface, can formulate a simplified version of the game-
theoretic model proposed in this paper and find the optimal
strategy for monitoring (which is to monitor the robot for
0.327 or 19.62 minutes of an hour and use the remaining time
to grade papers). The participants’ time slice allocated for
monitoring, across the five trials, are shown in Fig. 3. Given
that there are only two actions for the participant, the strategy
can be represented using a single variable (fraction to monitor
the robot) and thus, is plotted along the x-axis. The size of
each bubble is proportional to the number of participants who
selected a particular strategy. The optimal strategy is shown
using a black vertical line (i.e. x = 0.327). In the first trial,
we noticed a small subset of users (n = 5) calculate the
(almost) optimal strategy using the utility values specified on
the interface. Most of the other users (n = 18) choose a risk-
averse strategy, i.e. monitored the robot to ensure it performs
a safe plan even if it meant losing out on money that could be
earned from grading. The other 9 participants, in the hope of
making more money, spent a larger time grading papers but,
eventually ended up with a lower reward because the robot
performed the risky plan that failed to achieving the goal.

As the trials progressed, participants started discarding
extreme strategies (i.e. only monitor or only grade papers)
and started considering strategies closer to the optimal. This
only seems natural given that we provided feedback after each
trial. This feedback information helped the participants, even
the ones who didn’t leverage the provided utility values to come
up with a near-optimal strategy, improve their strategies using
trial-and-error. In Fig 3, note that for the first two trials, the
strategies are well spread out in the range [0, 1] where as in the
last two trials, the strategies are clustered around the optimal
decision boundary, with very few data points below 0.25 and
very few above 0.7. This shows humans hardly can find an
optimal monitoring strategy when there is no prior interaction
with the robot and finding an near optimal monitoring strategy
after many trial and error can cause a lot of loss (Supporting
H1 and H3).

Participant Types: In Figure 4, we plot the average utility
of each participant across five trials on the x-axis. The y-axis
represents the variance. Highlighted in dark, at the bottom
right, are five participants that chose observation probabilities
in the trust region but not exactly at the trust boundary, i.e.
sub-optimal w.r.t. the optimal trust boundary strategy (at 0.327)
that yields a reward of 173.77. After that, they did behave in
a greedy fashion to reduce the observation time in the hope to
make more money by grading papers and stuck to the good
policies they initially discovered. Towards the top-right corner,
the set of points circled in light gray, we saw a dense cluster of
participants (= 15) who obtained a high average utility but tried
to tweak their strategies significantly, sometimes observing less
and therefore, allowing the robot to choose the riskier plan.
which eventually lead to a large loss in reward. This implies
that the human often takes risk and deviates to more split-time
strategies since the time meant to monitoring can be used for



Fig. 5. Word cloud of the answers to: If a software were to provide you with
an optimal strategy, would you follow it?

other tasks (H2).
In the context of the designed study, people who took higher

risks to gain more utility would have some correspondence,
in the context of our game-theoretic model, to people who
would be fine with letting the robot execute a riskier plan.
Given that there is a higher number of people, it would imply
that the robot has a higher chance of being monitored by a
supervisor who would let them execute πpr. Thus, a higher
value of r. This fact makes it seem that our solution has lesser
significance because it is only necessary 1−r% of the time. We
point out this conclusion may be misplaced given the playful
nature of the setting where participants could actually consider
riskier strategies without the fear of actual loss of financial
utility or damage to their reputation. This may not hold true
for real-world settings where, we strongly believe, the value
of r may be lower.

Subjective Evaluation: We asked each participant two
subjective questions. The first question asked the participants to
discuss their methodologies for coming up with strategies. Out
of the 30 participants who answered this question, most of them
correctly identified the tension that exists between choosing a
relaxed monitoring strategy and the robot considering unsafe
behaviors. Although we found that 12 participants identified the
scenario as an optimization problem, only five of them seemed
to have been able to come up with near-optimal strategy in the
first trial. The other participants mostly mentioned that they
used a trial-and-error approach.

The second question asked if they would be willing to
consider an algorithm providing them the optimal monitoring
strategy given a supervision scenario. As shown by the word-
cloud in Fig 5, 24 out of the 31 candidates who choose to
answer the question, said yes. They assumed that the software
would (1) be fast and (2) maximize their utility. While 3
participants were willing to use the software as a sanity check
as long as it did not force them to follow the suggested strategy,
1 participant agreed to use the software only for large scale
problems. Lastly, 1 person said that they would place their trust
on the software if they knew that the developer had a strong
background in mathematics while the remaining 2 answered no
and maybe without any sort of justification. Thus, our formal
study of the interaction and a strategy suggestion is needed
and it can provide an assistant to the human that will help
them deal with the unsafe robots (H3).

VI. CONCLUSIONS AND FUTURE WORK

We model the notion of trust that a human supervisor places
on a worker robot by modeling this interaction as a Bayesian
Game. The particular Human-Robot interaction setting situates
our work at the middle of the spectrum that ranges from fully-
cooperative settings on one end to fully-adversarial scenarios
on the other. We show that existing notions of game-theoretic
trust break down in our setting when the worker robot cannot
be trusted due to the absence of pure strategy Nash Equilibrium.
Thus, we introduce a notion of trust boundary that optimizes
the supervisor’s monitoring cost while ensuring that the robot
workers stick to safe plans. Given that supervisors or caretakers
often spend time working on side goals (such as talking over
the phone, sleeping, watching movies, etc.), we carefully design
a human study to see whether humans have an inherent sense of
good monitoring policies. Beyond objective results, we show
that most humans explicitly say that they would prefer an
algorithm that computes the optimal strategy for them (in our
case, located on an edge of the trust region).

Such strategies can also be useful in other scenarios where
the supervised agent is not a robot. Note that in those cases, the
formulation needs to capture the irrationality and computational
capabilities of the monitored agent. Beyond these, we plan
to introduce the notion of trust that is prevalent in repeated
interaction settings. An interesting problem that may occur
in such settings is when the robot primes the human to not
observe its behavior by choosing safe and sub-optimal behaviors
(thereby engendering trust) and finally breaks the human’s trust
in a high-stake scenario.
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