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Abstract— Recent advances in mixed-reality technologies
have renewed interest in alternative modes of communication
for human-robot interaction. However, most of the work in
this direction has been confined to tasks such as teleoperation,
simulation or explication of individual actions of a robot. In this
paper, we will discuss how the capability to project intentions
affect the task planning capabilities of a robot. Specifically, we
will start with a discussion on how projection actions can be
used to reveal information regarding the future intentions of
the robot at the time of task execution. We will then pose a
new planning paradigm – projection-aware planning – whereby
a robot can trade off its plan cost with its ability to reveal
its intentions using its projection actions. We will demonstrate
each of these scenarios with the help of a joint human-robot
activity using the HoloLens.

I. INTRODUCTION

Effective planning for human robot teams not only requires
the ability to interact with the human during the plan execu-
tion phase but also the capacity to be “human-aware” during
the plan generation process as well. Prior work has under-
lined this need [1] as well as explored ways to exchange [2]
information in natural language during interaction with the
human in the loop. This is also emphasized in the Roadmap
for U.S. Robotics [3] – “humans must be able to read and
recognize robot activities in order to interpret the robot’s
understanding”. However, the state of the art in natural
language considerably limits the scope of such interactions,
especially where precise instructions are required. In this
paper, we present the case of wearable technologies (e.g.
HoloLens) for effective communication of intentions during
human-in-the-loop operation of robots. Further, we show that
such considerations are not confined to the plan execution
phase only, but can guide the plan generation process itself
by searching for plans that are easier to communicate.

In our proposed system, the robot projects its intentions
as holograms thus making them directly accessible to the
human in the loop, e.g. by projecting a pickup symbol on a
tool it might use in future. Further, unlike in traditional mixed
reality projection systems, the human can directly interact
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with these holograms to make his own intentions known to
the robot, e.g. by gazing at and selecting the desired tool
thus forcing the robot to replan. To this end, we develop
an alternative communication paradigm that is based on the
projection of explicit visual cues pertaining to the plan under
execution via holograms such that they can be intuitively
understood and directly read by the human. The “real” shared
human-robot workspace is thus augmented with the virtual
space where the physical environment is used as a medium to
convey information about the intended actions of the robot,
the safety of the workspace, or task-related instructions. We
call this the Augmented Workspace. In this paper –

- We demonstrate how the Augmented Workspace can
assist human-robot interactions during task-level plan-
ning and execution by providing a concise and intuitive
vocabulary of communication.

- In Section IV, we show how the intention projection
techniques can be used to reduce ambiguity over
possible plans during execution as well as generation.

- In Section IV-D, we show how this can be used to
realize a first of its kind task planner that, instead
of considering only cost optimal plans in the tra-
ditional sense, generates plans which are easier to
explicate using intention projection actions.

- In Section V, we demonstrate how the ability to project
world information applies to the process of explanations
to address inexplicability of a plan during execution.

Note that the ability to communicate information, and
planning with that ability to disambiguate intentions, is not
necessarily unique to mixed-reality interactions only. For ex-
ample, one could use the planner introduced in Section IV-D
to generate content for traditional speech-based interactions
as well (c.f. recent works on verbalization of intentions in
natural language [2], [4]). However, as demonstrated in this
paper, the medium of mixed-reality provides a particularly
concise and effective alternative (albeit much more limited)
vocabulary of communication, especially in more structured
scenarios such as in collaborative assembly.

II. RELATED WORK

The concept of intention projection for autonomous sys-
tems has, of course, been explored before. An early attempt
was made in [5] in a prototype Interactive Hand Pointer
(IHP) to control a robot in the human’s workspace. Similar
systems have since been developed to visualize trajectories
of mobile wheelchairs and robots [6], [7], which suggest that
humans prefer to interact with a robot when it presents its



intentions directly as visual cues. The last few years have
seen active research [8], [9], [10], [11], [12], [13], [14],
[15] in this area, but most of these systems were passive,
non-interactive and quite limited in their scope, and did not
consider the state of the objects or the context of the plan
pertaining to the action while projecting information. As
such, the scope of intention projection has remained largely
limited. Indeed, recent works [16], [17], [18] have made the
first steps towards extending these capabilities to the context
of task planning and execution, but fall short of formalizing
the notion of intention projections beyond the current action
under execution. Instead, in this paper, we demonstrate a
system that is able to provide much richer information to
the human during collaboration, in terms of the current state
information, action being performed as well as future parts
of the plan under execution, particularly with the notion of
explicating or foreshadowing future intentions.

Recent work in the scope of human-aware task and motion
planning has focused on generation of legible motion plans
[19], [20] and explicable task plans [21], [22] with the notion
of trading off cost of plans with how easy they are to
interpret for a human observer. This runs parallel to our work
on planning with intention projections. Note that, in effect,
either during the generation or the execution of a plan, we
are, in fact, trying to optimize the same criterion. However, in
our case, the problem becomes much more intriguing since
the robot gets to enforce legibility or explicability of a plan
by foreshadowing of actions that have not been executed yet.
Indeed, this connection has also been hinted at in recent work
[23]. However, to the best of our knowledge, this is the first
task-level planner to achieve this trade-off.

The plan explanation and explicability process forms a
delicate balancing act [24]. This has interesting implications
to the intention projection ability as we demonstrate in the
final section. Similarly, in [25], authors have looked at the
related problem of “transparent planning” where a robot
tries to signal its intentions to an observer by performing
disambiguating actions in its plan. Intention projection via
mixed-reality is likely to be a perfect candidate for this
purpose without incurring unnecessary cost of execution.

III. PRELIMINARIES OF TASK PLANNING

A Classical Planning Problem [26] is a tuple M =
〈D, I,G〉 with domain D = 〈F,A〉 - where F is a set of
fluents that define a state s ⊆ F , and A is a set of actions
- and initial and goal states I,G ⊆ F . Action a ∈ A
is a tuple 〈ca, pre(a), eff±(a)〉 where ca is the cost, and
pre(a), eff±(a) ⊆ F are the preconditions and add/delete ef-
fects, i.e. δM(s, a) |= ⊥ if s 6|= pre(a); else δM(s, a) |= s \
eff−(a)∪eff+(a) where δM(·) is the transition function. The
cumulative transition function is δM(s, 〈a1, a2, . . . , an〉) =
δM(δM(s, a1), 〈a2, . . . , an〉).

Note that the “model”M of a planning problem includes the
action model as well as the initial and goal states of an agent.
The solution toM is a sequence of actions or a (satisficing)
plan π = 〈a1, a2, . . . , an〉 such that δM(I, π) |= G. The cost

of a plan π is C(π,M) =
∑
a∈π ca if δM(I, π) |= G; ∞

otherwise. The cheapest plan π∗ = arg minπ C(π,M) is the
(cost) optimal plan with cost C∗M.

In addition, “projection actions” in the mixed reality
workspace are annotations on the environment that can
include information on the state of the world or the robot’s
plans – these can reveal information regarding the robot’s
future intentions, i.e. goals or plans. In this work, we assume
a very simple projection model based on the truth value of
specified conditions in parts of the plan yet to be executed –

An Action Projection AP is defined as a mapping u :
[0 . . . |π|] × A 7→ {T, F} indicating ∃ j ≥ i where aj ∈ π
iff u(i, aj) = T – i.e. existence or membership of an action
aj in the rest of the plan starting from the current action ai.

A State Value Projection SVP is defined as a mapping
v : F × A 7→ {T, F} so that there exists a state in the state
sequence induced by the sub-plan starting from ai where
the state variable f ∈ F holds the value v(f, ai), i.e. ∃ s′ :
δM(s, π′) |= s′ where s is the current state and π′ is the
sub-plan (π)

k≤|π|
k=i and f ∈ s′ iff v(f, ai) = T.

This engenders a restricted vocabulary of communication
between the human and the robot. However, it only allows
for disambiguation of plans based on membership of actions
(AP) and not their sequence, and also only the occurrence of
a state variable value (SVP) in the future with no information
as to when. Further, not all actions or state values can be
projected, i.e. the APs and SVPs available to the robot cover
only a subset of all the actions and state values that can be
communicated. Thus plans may not be always possible to
disambiguate with only these projection actions. Even so,
we will demonstrate in this paper how the robot can use
this vocabulary to effectively explicate its intentions to the
human in the loop in a variety of situations. In the following
sections, we will discuss how the robot can determine when
to deploy which of these projections for this purpose.

IV. PROJECTIONS FOR AMBIGUOUS INTENTIONS

In this section, we will concentrate upon how projection
actions can resolve ambiguity with regards to the intentions
of a robot in the course of execution of a task plan.

A. Projection-Aware Plan Execution

The first topic of consideration is the projection of inten-
tions of a robot with a human observer in the loop.

Illustrative Example. Consider a robot involved in a block
stacking task (Figure 1a). Here, the robot’s internal goal is
to form the word BRAT. However, given the letters available
to it, it can form other words as well – consider two more
possible goals BOAT and COAT. As such, it is difficult to
say, from the point of view of the observer, by looking at
the starting configuration, which of these is the real outcome
of the impending plan. The robot can, however, at the start
of its execution, choose to indicate that it has planned to pick
up the block R later (by projecting a bobbing arrow on top of



(a) The robot projects (AP) a green arrow on R to indicate a pickup
that is part of an optimal plan to only one of its possible goals.

(b) The robot inverts the projection context and shows (SVP) which
block is not going to be available using a red cross on A.

Fig. 1: Projection-Aware Plan Execution for human observer
and human-in-the-loop scenarios.

it), thereby resolving this ambiguity. A video demonstration
can be viewed at https://goo.gl/SLgCPE.

Note that directly displaying the actual goal – here, the fi-
nal word – is not possible in general across different domains
since these holograms have to be constructed separately
for each goal. Thus, the projections are tied to the robot’s
capabilities (e.g. pick-up) instead. Further, and perhaps more
importantly, we are trying to disambiguate plans as well and
revealing the goal does not in general achieve that purpose.

A Projection-Aware Plan Execution Problem PAPEP is
defined as the tuple Φ = 〈π,Π, {AP}, {SV P}〉 where π is
the robot’s plan up for execution, Π (which includes π) is
the set of possible plans it can execute. {AP} and {SV P}
are the set of action and state value projections available.

The solution to Φ is a composite plan πc ◦ π where πc ⊆
{AP}∪{SV P} are the projection actions that disambiguate
the plans at the time of execution. We compute this using
the concept of resource profiles, as introduced in [27].
Informally, a resource [27] is defined as any state variable
whose binary value we want to track. We will use this
concept to tie each action or state value projection action
to a single resource variable, whose effect can be monitored.

For example, a not-clear predicate will indicate that a
block is in use or not available while an action that produces
or negates that predicate – e.g. pick-up can be similarly
tracked through it. This mapping between projection ac-
tions and the corresponding resource variables is domain-
dependent knowledge that is provided.

A Resource Profile Rπ induced by a plan π on a resource
r is a mapping Rπ : [0 . . . |π|] × r 7→ {0, 1}, so that r is
locked by π at step i if Rπ(r, i) = 1 and it is free otherwise.

A Cumulative Resource Profile RΠ induced by a set
of plans Π on a resource r is a mapping RΠ :
[0 . . . maxπ∈Π |π|] × r 7→ [0, 1], so that r is locked with a
probability RΠ(r, i) =

∑
π∈ΠRπ(r, i)× P (π), where P (π)

is the prior probability of plan π (assumed uniform).

The set of projection actions πc in the solution π to the
PAPEP Φ are found by computing –

arg min
r

∑
i

Rπ(r, i)× RΠ(r, i) (1)

Thus, we are post-processing to minimize the conflicts be-
tween the current plan and the other possible plans, so that
the projection actions that are tied to the resources with the
minimal conflicts give us the most distinguishing projection.

B. Projection-Aware Human-in-the-Loop Plan Execution

In the previous example, we confined ourselves to situa-
tions with the human only as the observer. Now, we consider
a situation where both the human and the robot are involved
in task planning in a collaborative sense, i.e. both the human
and the robot perform actions in a joint plan to achieve their
goals which may or may not be shared.

Illustrative Example. Going back to the running example of
the block stacking task, now consider that the robot and the
human both have goals to make a three letter word out of
ART, RAT and COB (as seen in Figure 1b). The robot has
decided to make the word ART, but realizes that this leaves
the human undecided on how to proceed. Thus the disam-
biguating projection action here includes annotating the A
block with a “not available” symbol so that the only possible
goal left for the human is COB. A video demonstrating this
can be viewed at https://goo.gl/SLgCPE (same as in
Section IV-A). Note that in this case the robot, in coming up
with a useful projection action, has reversed the perspective
from what is relevant to its own plan, to information that
negates possible plans of the human in the loop.

A Projection-Aware Human-in-the-Loop Plan
Execution Problem PAHILPEP is a tuple Ψ =
〈πR,ΠH ,G, {AP}, {SV P}〉 where πR and ΠH are
the robot’s plan and the set of possible human plans, G is
the team goal, and {AP} and {SV P} are the set of action
and state value projections available to the robot.

The solution to Φ is, as before, a composite plan πc ◦ πR
where the projection actions are composed with the robot’s
component of the joint team plan, such that δ(I, πc ◦ πR ◦



Fig. 2: Interactive execution of a plan in the Augmented Workspace - (a) the robot wants to build a tower of height three
with blocks blue, red and green. (b) Blocks are annotated with intuitive holograms, e.g. an upward arrow on the block the
robot is going to pick up immediately and a red cross mark on the ones it is planning to use later. The human can also gaze
on an object for more information (in the rendered text). (c) & (d) The human pinches on the green block and claims it
for himself. The robot now projects a faded out green block and re-plans online to use the orange block instead (as evident
by pickup arrow that has shifted on the latter at this time). (e) Real-time update and rendering of the current state showing
status of the plan and objects in the environment. (f) The robot completes its new plan using the orange block.

Fig. 3: Interactive plan execution using the (a) Holographic Control Panel. Safety cues showing dynamic real-time rendering
of volume of influence (b) - (c) or area of influence (d) - (e), as well as (i) indicators for peripheral awareness. Interactive
rendering of hidden objects (f) - (h) to improve observability and situational awareness in complex workspaces.

πH) |= G. The set of projection actions πc in the solution
to the PAHILPEP Ψ is again found by computing –

arg max
r

∑
i

Rπ
R

(r, i)× RΠH

(r, i) (2)

Notice the inversion to argmax, since in the case of an
active human in the loop, so as to provide the most pertinent
information regarding conflicting intentions to the human.

Remark. Joint plans [28] to reason over different modes
of human-robot interactions has been investigated before,
particularly in the context of using resource profiles [27] for
finding conflicts in the human’s and the robot’s plans. It is
interesting to note the reversed dynamics of interaction in the
example provided above – i.e. in [27] the resource profiles
were used so that the robot could replan based on probable
conflicts so as to preserve the expected plans of the human.
Here, we are using them to identify information to project
to the human, so that the latter can replan instead.

C. Closing the Loop – Interactive Plan Execution

Of course, it may not be possible to always disentangle
plans completely towards achievement of a shared goal in a
collaborative setting. Next, we show how the communication
loop is closed by allowing the humans to interact directly
with the holograms in the augmented workspace thereby

spawning replanning commands to be handled by the robot,
in the event of conflicting intentions.

1) Replanning – : In the previous examples, the robot
projected annotations onto the objects it is intending to
manipulate into the human’s point of view with helpful
annotations or holograms that correspond to its intentions
to use that object. The human can, in turn, access or claim
a particular object in the virtual space and force the robot to
re-plan, without there ever being any conflict of intentions
in the real space. The humans in the loop can thus not only
infer the robot’s intent immediately from these holographic
projections, but can also interact with them to communicate
their own intentions directly and thereby modify the robot’s
behavior online. The robot can also then ask for help from
the human, using these holograms. Figure 2 demonstrates
one such scenario. The human can also go into finer control
of the robot by accessing the Holographic Control Panel, as
seen in Figure 3(a). The panel provides the human controls
to start/stop execution of the robot’s plan, as well as achieve
fine grained motion control of both the base and the arm
by making it mimic the user’s arm motion gestures on the
MoveArm and MoveBase holograms attached to the robot.

2) Assistive Cues – : The use of AR is, of course, not just
restricted to procedural execution of plans. It can also be used



Fig. 4: Projection-aware plan generation illustrating trade-off
in plan cost and goal ambiguity at the time of execution –
(top left) generating a plan that has the most discriminating
projection (green arrow on B – only one word BAT possible);
when longer word BRAT is available – (bottom left) α =
100 yields green arrow on C with two words ACT and CAT
possible while (right) α = 1000 yields green arrow on R
with only one but longer word BRAT possible.

to annotate the collaborative workspace with artifacts derived
from the current plan under execution in order to improve the
fluency of collaboration. For example, Figure 3(b-e) shows
the robot projecting its area of influence in its workspace
either as a 3D sphere around it, or as a 2D circle on the area
it is going to interact with. This is rendered dynamically in
real-time based on the distance of the end effector to its
center, and to the object to be manipulated. This can be
very useful in determining safety zones around a robot in
operation. As seen in Figure 3(f-i), the robot can also render
hidden objects or partially observable state variables relevant
to a plan, as well as indicators to improve peripheral vision
of the human, to improve their situational awareness.
Demonstrations for Sections IV-C and IV-C.2 can be viewed
at https://goo.gl/pWWzJb.

D. Projection-Aware Plan Generation

Now that we have demonstrated how intention projection
can be used to disambiguate possible tasks at the time of
execution, we ask is it possible to use this ability to generate
plans that are easier to disambiguate in the first place?

Illustrative Example. Consider again the blocks stacking
domain, where the robot is yet to decide on a plan, but it has
three possible goals BAT, CAT and ACT (Figure 4). From the
point of view of cost optimal planning, all these are equally
good options. However, the letter B is in only one of the
words, while the others are in at least two possible words.
Thus the robot is able to reduce the ambiguity in plans by
choosing the word BAT over the other options as a means
of achieving the goal of making a word from the given set.

Illustrative Example. Now imagine that we have extended the
possible set of words { BAT, CAT, ACT } with a longer word
BRAT. The robot responds by projecting R and completes this
longer word now, given R is the most discriminating action,
and the possibility of projecting it ahead completely reveals
its intentions even though it involves the robot doing a

Algorithm 1 Projection-Aware Planning Algorithm
1: procedure PAPP-SEARCH

2: Input: PAPP Λ = 〈M, κ, {AP}, φ〉
3: Output: Plan π
4: Procedure:
5: A ← A∪ {AP} . Add projections to action set
6: fringe ← Priority Queue()
7: fringe.push(〈I, 〈〉〉, 0)

8: while True do
9: 〈Ŝ, π̂〉, c← fringe.pop()

10: if goal check true then return π̂ . Refer to Section IV-D
11: else
12: for a ∈ A do
13: if ŝ |= pre(a) then
14: ŝ′ ← δ(ŝ, a)
15: fringe.push(〈ŝ′, π̂ + a〉, F (ŝ′, a, π̂))

16: procedure F(ŝ′, a, π̂)
17: if a 6∈ {AP} then
18: return ca + cost(π̂)
19: else
20: Compute Π = {delete− relaxed plans to κ}
21: N ← 0
22: for π ∈ Π do
23: if AP−1(a) ∈ π then
24: N ← N + 1

25: return α( ca + cost(π̂) ) + βN . (Equation 4)

longer and hence costlier plan as seen in Figure 4. This
trade-off in the cost of plans and the ambiguity of intentions
forms the essence of what we refer to as projection-aware
planning. In fact, we can show that by correctly calibrating
this trade-off, we can achieve different sweet spots in how
much the robot decides to foreshadow disambiguating ac-
tions. As seen in Figure 4, in cases where the action costs
are relatively greater than gains due to resolved ambiguity,
the robot achieves a middle-ground of generating a plan
that has the same cost as the optimal plan to achieve the
goal of making a word from this set, but also involves
reasonable forecasting of (two) possible goals by indicating
a future pick-up action on C. A video demonstrating these
behaviors can be viewed at https://goo.gl/bebtWS.

A Projection-Aware Planning Problem PAPP is defined
as the tuple Λ = 〈M, κ, {AP}, {SV P}〉 where M is a
planning problem and κ is a set of disjunctive landmarks.

The solution to Λ is a plan such that –
– π achieves the goal; and
– commitments imposed by the projection actions, i.e.

future state conditions indicated by SVPs or actions
promised by APs (Section III) are respected.

The search for which projection actions to include is
achieved by modifying a standard A∗ search [29] so that
the cost of a plan includes actions costs as well as the cost
of ambiguity over future actions (e.g. to possible landmarks)
given a prefix. This is given by –

α C(π̂,M) + β E(Π, π̂) (3)

Here Π is a set of possible plans that the robot can
pursue from the current state and E(Π) is the entropy of the
probability distribution [30] over the plan set Π given the
current plan prefix π̂ to that state. Since a full evaluation of



the plan recognition problem in every node is prohibitively
expensive, we use a simple observation model where the
currently proposed projection action tests membership of its
parent action if it is an AP (or state value if it is an SVP)
in a minimal delete-relaxed plan [31] to each landmark –

αC(π,M) + β
∑
κ

I(ai ∈ π − del) (4)

where I is the indicator function indicating if the current
action ai is part of the minimal delete-relaxed plan π − del
from the current state to each of the landmarks κ. Of course,
there can be many such plans only some of which include
the projection action as a necessary component. So at best,
in addition to the delete relaxation, checking membership
only provides a guidance (and no guarantees) to which of the
possible plans can include a projection. The set of landmarks
was composed of the possible words that contributed to the
goal of making a valid word. The details1,2 are provided in
Algorithm 1. Notice that the indicator function only comes
into play when projection actions are being pushed into the
queue, thus biasing the planner towards producing plans that
are easier to identify based on the projections.

V. PROJECTIONS FOR INEXPLICABLE ACTIONS

In the previous section, we had focused on dealing with
ambiguity of intentions during execution of a plan. Now
we will deal with inexplicability of actions, i.e. how to use
projection capabilities to annotate parts of the world so that
a plan under execution “makes sense” to the observer.

Illustrative Example. Going back to our block stacking
setting, consider a scenario where the human-in-the-loop
asks the robot to make a tower of height three with the red
block on top (Figure 5). Here the optimal plan from the point
of view of the observer is likely to be as follows –
>> Explicable Plan | >> Robot Optimal Plan
pick-up green | pick-up red
stack green blue | put-down red
pick-up red | pick-up yellow
stack red green | stack yellow green

| pick-up red
| stack red green

However, not all the blocks (e.g. blue) are reachable,
as determined by the internal trajectory constraints of the
robot. So its optimal plan would instead be longer, as
shown above. This plan is, of course, inexplicable if the
observer knows that the robot is a rational agent, given the
former’s understanding of the robot model. The robot can
chose to mitigate this situation by annotating the unreachable
blocks as “not reachable” as shown in Figure 5. A video
demonstration can be seen at https://goo.gl/TRZcW6.

The identification of projection actions in anticipation of
inexplicable plans closely follows the notion of multi-model

1We currently handle only APs in the solution to a PAPP. Also, the
number of APs in a solution were restricted to a maximum of two to three
due to the time consuming nature of computing Π. This can be very easily
sped up by precomputing the relaxed planning graph.

2Note that to speed up search we used “outer entanglement” analysis [32]
to prune unnecessary actions for the blocks stacking domain.

Fig. 5: The human has instructed the robot to make a tower
of height 3 with the red block on top. Since the blue block
is not reachable it has to unstack red in order to achieve its
goal. This is a suboptimal plan to the observer who may not
know the robots internal trajectory constraints and that the
blue block in unreachable. The robot thus decides to project
a red error symbol on the blue block indicating it is not
reachable. The optimal plans in both models now align.

explanations studied in [26]. The inexplicability of actions
can be seen in terms of differences in the model of the
same planning problem between the robot and the human
in the loop, as opposed to the examples previously where
coordination was achieved with respect to aligned models.

A Multi-Model Planning Problem (MMP) is the tuple
Γ = 〈MR,MR

h 〉 where MR = 〈DR, IR,GR〉 and MR
h =

〈DR
h , IRh ,GRh 〉 are respectively the planner’s model of a

planning problem and the human’s understanding of it.

In our block stacking domain, multiple models are spawned
due to internal constraints of the robot that the human
may not be aware of (e.g. reachability) while the world
model (i.e. how the world works - the robot has to pick
up and object to put it down, etc.) is shared across both
the models. As these models diverge, plans that are optimal
in the robot’s model may no longer be so in the human’s
and thus become inexplicable. The robot can mitigate these
situation by generating multi-model explanations [33] –

A Multi-Model Explanation is a solution to an MMP in
the form of a model update to the human so that the optimal
plan in the robot’s model is now also optimal in the human’s
updated model. Thus, a solution to Γ involves a plan π and
an explanation E such that –

(1) C(π,MR) = C∗MR ;
(2) M̂R

h ←−MR
h + E ; and

(3) C(π,M̂R
h ) = C∗M̂R

h

.

We use the same to generate content for the explanations
conveyed succinctly through the medium of mixed reality,
as described in the illustrative example above.

VI. CONCLUSION

In conclusion, we showed how an augmented workspace
may be used to improve collaboration among humans and



robots from the perspective of task planning. This can be
either via post-processing its plans during the interactive plan
execution process where the robot can foreshadow future
actions to reveal its intentions, or during search during the
projection-aware plan generation process where the robot
can trade-off the ambiguity in its intentions with the cost
of plans. Finally, we showed how explanatory “dialogs”
with the human as a response to inexplicable plans can be
conducted in this mixed-reality medium as well.

Such modes of interaction open up several exciting av-
enues of future research. Particularly, as it relates to task
planning, we note that while we had encoded some of the
notions of ambiguity in the planning algorithm itself, the
vocabulary of projections can be much richer and as such
existing representations fall short of capturing these relation-
ships (e.g. action X is going to happen 3 steps after action Y).
A holographic vocabulary thus calls for the development of
representations – PDDL3.x – that can capture such complex
interaction constraints modeling not just the domain physics
of the agent but also its interactions with the human. Further,
such representations can be learned to generalize to methods
that can, given a finite set of symbols or vocabulary, compute
domain independent projection policies that decide what and
when to project to reduce cognitive overload on the human.

Finally, in recent work [34], we looked at how the beliefs
and intentions of a virtual agent can be visualized for
transparency of its internal decision-making processes – we
refer to this as a process of “externalization of the brain” of
the agent. Mixed-reality techniques can play a pivotal role in
this process as we demonstrate in [35]. Indeed, interfacing
with virtual agents embody many parallels to gamut of
possibilities in human-robot interaction [36].

Video Demonstrations. Demonstrations of all the use
cases in the paper can be viewed at https://goo.
gl/Gr47h8. The code base for the projection-aware plan
generation and execution algorithms are available at https:
//github.com/TathagataChakraborti/ppap.
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