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Abstract. A lot of software systems are deployed in the cloud. Owing
to realistic demands for an early product launch, oftentimes there are
vulnerabilities that are present in these deployed systems (or eventu-
ally found out). The cloud service provider can find and leverage this
knowledge about known vulnerabilities and the underlying communica-
tion network topology of the system to position network and host-based
Intrusion Detection Systems (IDS) that can effectively detect attacks.
Unfortunately, deploying IDS on each host and network interface im-
pacts the performance of the overall system. Thus, in this paper, we
address the problem of placing a limited number of IDS by using the
concept of Moving Target Defense (MTD). In essence, we propose an
MTD system that allows a defender to shift the detection surfaces and
strategically switch among the different IDS placement configurations in
each round. To find a secure switching strategy, we (1) formulate the
problem of placing a limited number of IDS systems in a large cloud
network as a Stackelberg Game between the cloud administrator and
an (external or stealthy) attacker, (2) design scalable methods to find
the optimal strategies for switching IDS placements at the start of each
round, and (3) formally define the problem of identifying the most criti-
cal vulnerability that should be fixed, and propose a solution for it. We
compare the strategy generated by our method to other state-of-the-art
strategies, showcasing the effectiveness and scalability of our method for
real-world scenarios.

Keywords: Moving Target Defense · Intrusion Detection Systems · Stack-
elberg Games.

1 Introduction

System Administrators, oftentimes, use Intrusion Detection Systems (IDS) to
detect on-going attacks on modern-day cyber-systems [34]. These IDS systems
perform sophisticated operations– like signature-matching [3], anomaly detection
[15, 11], machine learning [17, 1, 21] etc. – to investigate either live traffic on
the wire (using Network-based IDS (NIDS) [33, 2]), or monitor resources on a
machine (using Host-based IDS (HIDS) [43, 13]) to flag anomalous requests that
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might result in potential loss of confidentiality, integrity or availability. Cloud
service providers, who host third parties on their platform, encounter non-trivial
challenges when it comes to deploying these IDS that can identify vulnerabilities
present in their system on account of legacy or operational constraints [12]. The
foremost among these challenges is the placement of IDS on all nodes of a large
network, which results in reduced performance [20, 42] (also see Section 6.2).
Moreover, third party users of the cloud platform, due to privacy and security
reasons, have constraints about sharing their data with the cloud provider [6].

Thus, given a cloud service provider’s performance constraints and their cus-
tomer’s privacy constraints, we look at the problem of placing a limited number
of IDS systems in the various nodes of the cloud system. It is trivial to see that
if we place IDS systems statically that only monitor certain attacks on specific
nodes, an attacker (especially a stealthy one, i.e. one who resides inside a de-
ployed systems and can attack a node anywhere in the network as opposed to
having access to only hosts at the entry point) will eventually figure out our
placement strategy [42]. At this point, a strategic attacker can always select at-
tacks that circumvent the IDS placed, thus passing through our cloud network
undetected [38]. To address this, we design a Moving Target Defense (MTD)
approach for dynamic placement of IDS systems on cloud systems.

The placement mechanism for our cloud framework places both Network and
Host-based IDS. We will use a NIDS called snort [32] for detecting malicious
behavior over the network and a HIDS known as auditd on the hosts of our
cloud system. The assumption is that NIDS is placed at the gateway of each
tenant network and the HIDS is deployed on each individual VM. A dynamic
switching (or MTD) strategy selectively turns on/off the different HIDS or
NIDS systems that can be used to monitor requests or hosts, thereby shifting
the detection surface at each round without the need to consider switching costs
among configurations because on/off commands from a central server sent out
only at the start of every round hardly impact performance.

The cyber-security community has mostly defined and used MTD, so far,
to shift the attack surface of a system that takes away the advantage of recon-
naissance that an attacker has [45]. In this work, we generalize this notion of
MTD and introduce an MTD system that shifts the detection surface to keep
an attacker from guessing about whether their next attack will be detected or
not. In conjunction with that, the key contributions of this paper are,

– We formulate the problem of placing limited IDS systems in a large cloud-
based network using MTD as a two-player Stackelberg Game between the
defender and an attacker. The equilibrium of this game gives us the opti-
mal movement strategy that the defender should use to switch between the
various IDS placements.

– We obtain the utility values of the players in this game by combining (1)
the Common Vulnerability Scoring System (CVSS) that has been previously
used to represent the impact of attacks on the defender’s system [23] and (2)
the centrality values of the nodes in which an IDS is deployed that lets us
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capture (i) the connectivity information and (ii) the impact on performance
when an IDS is placed on that node [42].

– We design a scalable optimization problem to find the Stackelberg Equilib-
rium of our formulated game (Sec. 4). In this approach, we introduce an
input parameter α that lets the defender balance between the security of the
system and the impact on the performance of the system.

– We define the problem of finding the most critical vulnerability in a cloud
environment with a strategic attacker and a multi-objective utility function
and propose a method to solve it (Sec. 5).

– We demonstrate the effectiveness of our approach on a running example by
comparing it to state-of-the-art deterministic, uniformly random and cen-
trality based MTD switching strategies. We then provide experimental re-
sults in a real-world large-scale cloud-based environment that showcases the
scalability of our approach (Sec. 6).

2 Related Work

Moving Target Defense [45] has been recently used to thwart a wide range of at-
tacks against network-based [16, 41] and cloud-based systems [7, 9]. These meth-
ods mostly shift the attack surfaces that takes away the advantage of reconnais-
sance an attacker has. A stealthy and strategic adversary [5], who can reside
deep within the network, can still render these methods ineffective.

For such cases, researchers have previously investigated the placement of
detection systems in large network-based environments and designed both static
[20] and dynamic [42] placement mechanisms based on graph-theoretic measures.
Unfortunately, the former method cannot adapt its placement strategy when
facing a stealthy adversary. On the other hand, the latter method, which does
not incorporate the knowledge of known vulnerabilities, performs sub-optimally
when facing a strategic and rational adversary.

A switching strategy for any dynamic placement method or MTD system
needs to incorporate attacker modeling and thus, game theoretic reasoning for
it to be effective [31, 37, 39]. Previously, authors in [22] have modeled an MTD
system as a game called PLADD, based on FlipIt [40]. This work assumes that dif-
ferent agents control the server in different game rounds, which is an impractical
setting for cloud environments. In [19], researchers assume known vulnerabilities
and design a deception mechanism using a Stackelberg Model to introduce hon-
eynets against a specific class of attackers. Authors in [36] and [35] formulate
the switching between various web-stack configurations and classifiers in an en-
semble respectively as a Stackelberg Game. Unfortunately, the methods to find
the Stackelberg equilibrium in these cases become intractable as the number of
defender strategies explodes combinatorially.

Researchers have shown that decomposition of the reward structure makes
the problem of finding the Stackelberg Equilibrium computationally efficient
[24]. We leverage this information and design the rewards for our game while
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Fig. 1. Defender’s system on the enterprise cloud that the attacker wants to attack.

ensuring that the Stackelberg equilibrium balances between two important met-
rics [23]– (1) the costs of placing IDSs (on performance, cost of countermeasure
deployment etc.) and (2) the impacts on the security of our system.

Lastly, researchers have leveraged the attack graph information of a network
and tried to come up with classical AI planning approaches [26] or MDP-style
approaches [14, 29] to find effective ways of finding critical attacks against a
system. Unfortunately, these approaches cannot be easily applied in the case of
dynamic systems like MTD and thus we develop an approach to find the most
critical vulnerability that should be fixed in our system.

3 Game-Theoretic Modeling

In this section, we first define the threat model of our system, defining the players,
their action/strategy sets using a small real-world scenario that we set up on an
enterprise cloud (Fig. 1). We then describe how the rewards of this game are
formulated leveraging the CVSS data and network topology information.

Threat Model In our attack model, we consider a multi-tenant cloud network.
The controller node, shown in the Fig. 1, is used for network management and or-
chestration. The network administrator (or the defender) utilizes a management
network to access controller nodes and cloud servers hosting VMs. We consider
two agents– the defender D, who is trying to deploy IDS and an (external or
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ID VM cb Vulnerability CVE ID IOC

a1 G1 4 SSH Buffer Overflow CVE-2016-6289 NIDS sshAlert

a2 G2 7 rlogin CVE-1999-0651 NIDS rlogin

a3 W 0 Cross Side Scripting CVE-2016-2163 HIDS webAccess

a4 D 0 Weak Credentials CVE-2001-0839 HIDS fileIntegrity

a5 F 0 vsftpd backdoor CVE-2015-1419 HIDS ftpLogin

Table 1. The different VMs in the defender’s network, their betweenness centrality (cb)
in the graph, the known vulnerabilities in these nodes (VMs), and the corresponding
Network/Host-based Intrusion Detection Systems (NIDS/HIDS) which can detect these
attacks, also known as the Indicators of Compromise (IOC).

stealthy) attacker A, who is trying to remain undetected while attacking the
system. As a running example, we will use the scenario deployed by D shown in
Fig 1. Furthermore, this system has a set of known vulnerabilities, that are yet
to be fixed and as per our assumptions, known to both the agents D and A.

We assume that the attacker A can be located either inside or outside the
cloud network. The attacker’s primary goal is to (1) compromise a VM using
known vulnerabilities and (2) remain undetected while doing so. Since the at-
tacker can utilize network probing to identify the OS and software versions, it
will eventually get to know the vulnerabilities (CVEs) associated with the sys-
tem, and can then systematically exploit these in order to obtain network access
or elevated privileges. Furthermore, the attacker can only be detected when it
attacks a vulnerability for which the corresponding IDS is in place at the time of
exploitation. For stealthy attackers [5], who have to spend a lot of cost and/or
effort in gaining access to an internal node, the latter is of utmost importance.

Now given the system’s communication graph, we extract the set A of all the
n known vulnerabilities in our system (n = (|A|)). For our system, we choose the
ai IDs in the first column of table 1 to represent an attack (and the corresponding
IDS that detects this attack). Thus, n = 5 and the set A = {a1, a2, a3, a4, a5}.
Note that this ID encodes a two-tuple 〈MachineName, CVE-ID〉. Thus, multiple
attacks corresponding to a single machine will each receive a unique ID.

The defender D, as mentioned before, has a limited budget to place only
k(< n) IDS mechanisms due to resource constraints. Also, we assume that, due
to privacy constraints, D cannot place an IDS mechanism on the ‘SQL Server
(M)’ (shown in Figure 1). Thus, in our model, we disregard any vulnerabilities
present on this node. (Note that although our system can detect a class of
vulnerabilities that trigger NIDS alarms on the network interface G1 when they
affect M, we exclude such vulnerabilities from our example). Now, D has

(
n
k

)
ways in which it can deploy the k IDSs. This is the action set of D. Formally,
the defender’s action set is denoted by the set Ak = {S ∈ A : |S| = k}. In the
running example, we will assume that k = 2. Thus, the defender’s action set is:

{(a1, a2), (a1, a3), (a1, a4), (a1, a5), (a2, a3), (a2, a4), (a2, a5), (a3, a4), (a3, a5), (a4, a5)}

Since, we assume a strong adversary who either knows or can find out all the
attacks in our system, the action set of the attacker is the attack set A =
{a1, a2, a3, a4, a5} itself.
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In game theory, this action set is often referred to as the set of pure strategies,
where each action (either a placement strategy or an attack) is a pure strategy
(for D or A respectively). As stated earlier, if a defender chooses a pure strategy,
i.e, any one out of the ten pure strategies shown, to deploy k IDS systems, the
attacker, with reconnaissance on its side, will eventually figure out D’s strategy
and start choosing attacks that do not trigger these alarms. In order to address
this limitation, the defender can play a mixed strategy, i.e. have a probability
associated with playing each pure strategy and at the start of each round pick
one by randomly sampling a pure strategy from the set of pure strategies. Note
that this is similar to applying the concept of Moving Target Defense where the
defender chooses to switch randomly among the different deployment configura-
tions (i.e. by choosing one of the ten IDS placements in our case) at the start of
each time period.

Common Vulnerability Scoring System (CVSS) The CVSS metric pro-
vides two quantitative scores for each CVE present in our system–(1) the Impact
Score (IS) that represents the effect a particular attack has on the Confidential-
ity, Integrity, and Availability of a system and (2) the Exploitability Score (ES),
which encodes the complexity of actually exploiting a particular vulnerability.
The system defines a way to combine both of these scores to calculate a third
score, known as the Base Score (BS) that tries to consider both the impact of
an attack vs. the difficulty in exploiting it.

The CVSS scores thus leverage the knowledge of cybersecurity experts across
the globe to provide a numerical value corresponding to each (known) vulnera-
bility that reflects its severity and expertise necessary to exploit it. We, inspired
by other research work before us [44, 27, 36], use the CVSS to calibrate the
reward values of our game.

3.1 Stackelberg Games

Having defined the players and their action (or pure strategy) sets, there are
additional real-world aspects that we want to incorporate in the formulation
of our game. One such aspect is that the defender, who hosts the system that
an attacker attacks, plays first. To accurately model this scenario, we use the
concept of Stackelberg games in which one player (D) acts before the other player
(A) plays and find the Stackelberg Equilibrium of these games, in which the
leader’s (D) strategy is contingent upon the fact that the follower (A) can observe
D’s strategy and play accordingly. Thus, in this adversarial leader-follower game,
D can simulate A in their mind and decide on a mixed strategy that gives it the
highest utility keeping in mind (that a rational) A will choose the best action
(∈ A), i.e. the action that maximizes A’s reward, in response.

3.2 Utility Modeling

Having designed the action sets of both the players, we can now specify the
utilities for both the players when each of them commits to a pure strategy.
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Note that just to enumerate all the utility values for our game we would have
to specify 2 ·

(
n
k

)
· n values corresponding to the reward values for each of the

players D and A in the normal form game matrix. With this general reward
structure, finding the mixed-strategy Stackelberg equilibrium of this game would
be computationally inefficient, specifically O(

(
n
k

)
) [10]. Thus, we now devise a

particular reward structure that captures all the aspects of our problem and lets
us efficiently compute the equilibrium strategy.

For each attack a ∈ A, if D places an IDS to detect it, we will say that
D covers it. Otherwise, we say that a is left uncovered. Since the defender can
allocate only IDS resources to cover k elements in A, the remaining n−k attacks
will remain uncovered at any point in time. We will now decompose the reward
structure of this game and define four types of utility values corresponding to
each attack a ∈ A.

〈UDc,a, UDu,a, UAc,a, UAu,a〉

where UDc,a and UDu,a denotes the utilities that a defender gets for covering or

not covering an attack a respectively. Similarly, UAc,a and UAu,a represent the
utility an attacker gets when they use an attack a that is covered (and thus gets
detected) or not covered (and thus avoids detection) respectively. The values
for these symbols are obtained by leveraging the knowledge of security experts
as encoded in the Common Vulnerabilities Scoring System (CVSS) [28] and the
realistic costs of deploying IDSs. For each attack ai in the set of attack actions
A, we will represent these scores as ISai , ESai and BSai using CVSS metrics,
previously discussed in Sec. 3.

Cost of deploying IDS. We denote the cost of deploying an IDS correspond-
ing to an attack a ∈ A as ĉa. For our example, we assume the cost of deploying
an IDS (shown in the IOC column of table 1) to be proportional to the between-
ness centrality of the VMs on which the IDS is deployed because a VM with high
betweenness centrality will affect the latency of routing packets or the latency
of processing a request. Also, the centrality values are normalized in the interval
[0, 10] to be comparable to the CVSS metrics ISa, ESa and BSa as discussed
in Sec. 3. Note that the model in this paper allows another user to define ĉa in
a different way.

We now leverage these defined metrics to design the following rewards for
the four utilities associated with each attack a present in our system,

UDc,a = −1 ∗ ĉa , UDu,a = −1 ∗ ISa
UAc,a = −1 ∗ ESa , UAu,a = +1 ∗BSa

We now provide the rationale for modeling the rewards in this particular manner.
The value of UDc,a is negative since even if it detected an attack, it incurred a cost
in order to detect it and moreover there is no extra positive reward given to D
for protecting their system, which is supposed to be the primary functionality.
When D does not place an IDS for detecting the attack a, it incurs a negative
utility (UDu,a) equal to ISa if the attacker uses attack a.
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For the attacker A, if it chooses an attack action a which the defender covers
(i.e. can detect), it gets a negative utility UAc,a proportional to the time and cost it
had to invest in doing it, which is (somewhat) measured by ES. Also, as A gains
nothing by doing this attack (since the defender can deploy a countermeasure on
detection [8]), no positive value is added to it. Lastly, when the attacker uses an
attack for which the defender has not placed an IDS, we give a positive utility
that (conceptually) adds the IS and subtracts the cost (ES) of performing the
attack. Since BS already captures this trade-off, we use it directly.

4 Computing the Stackelberg Equilibrium

We need to solve for the Stackelberg Equilibrium of our game to obtain proba-
bility values for each configuration mentioned in Ak, where Ak ⊂ A such that
|Ak| = k. Unfortunately, since there are

(
n
k

)
such probabilities (corresponding

to each element in Ak), solving for all these variables at once will not yield an
efficient solution. Instead, we will solve for the probabilities pa which represents
the probability that a certain attack a ∈ A is covered by an IDS in a round.

To that extent, we first describe a method that can help in generating the
marginal strategies for the defender by solving n (= |A|) Linear Programs. Note
that the solution can be found in polynomial time in our case because of the
particular reward structure our game has. Then, we shall propose an efficient
Mixed Integer Quadratic Program (MIQP) method based on this method that
helps us to obtain the same marginal strategy, but by solving just one opti-
mization problem. We show that although this formulation, in the general case,
is known to computationally hard to solve, in our case, by efficient use of the
branch-and-cut mechanism, we can solve it in polynomial time.

4.1 Multiple LP method

Let T denote the set of k tokens that the defender D can allocate to cover k of
the n attacks. Allocating a token to an attack a means that D has placed the
IDS that can detect the particular attack. Now, let the variables pa represent
the probability with which an attack a is covered by one of the k tokens and
pa,t represent the probability with which a particular attack a is covered by
a particular token t ∈ T . Having defined the probabilities pa, the defender’s
expected utility for deploying an IDS to detect a particular attack a∗ should be
UDu,a∗ ∗ (1− pa∗) + UDc,a∗ ∗ pa∗ [24, 25]. Note that, for our scenario, this does not
capture the cost D incurs in deploying the other k − 1 IDS mechanisms. Thus,
we modify the defender’s utility to UDu,a∗ ∗(1−pa∗)+ 1

k

∑
a∈A U

D
c,a ∗pa, where the

second term denotes the average cost for a particular deployment configuration.

On the other hand, we can simply define the attacker’s expected utility for
using a particular attack a as UAc,a ∗ pa + UAu,a ∗ (1 − pa). We now present the
optimization problem that maximizes the defender’s objective function and the
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attacker’s utility given that an attacker chooses to use the attack a∗.

max α · 1

k

∑
a∈A

UDc,apa + (1− α) · UDu,a∗(1− pa∗) (1)

s.t. pa ∈ [0, 1] ∀ a ∈ A
pt,a ∈ [0, 1] ∀ a ∈ A, t ∈ T∑

a∈A
pt,a = 1 ∀ t ∈ T∑

t∈T
pt,a = pa ∀ a ∈ A

UAc,apa + UAu,a(1− pa) ≤ UAc,a∗pa∗ + UAu,a∗(1− pa∗)

where α is an input parameter that allows the defender to a trade the perfor-
mance of the system with respect to the security of the system (and vice versa).
In the extreme case when α = 0, the defender optimizes only for security and
completely ignores the fact that deploying k IDSs might affect the performance
of the system. In this case, as shown in 6, D ends up randomizing more between
the deployment configurations of the system. On the other hand, when α = 1,
the defender optimizes for performance, hardly placing an IDS on systems that
affect performance even when it is detrimental to security. We discuss the effects
of selecting various α-s in section 6.

Before we dive into what the constraints mean, note that this is a Linear
Program (LP) and thus, can be solved in polynomial time. The first two sets of
constraints ensure that the optimization variables pa and pt,a are valid proba-
bilities. The third set of constraints ensures that all the tokens are utilized in
covering the different attacks in A. The equality of this constraint is possible
in our case since (1) all our tokens are homogeneous, i.e. any token t ∈ T can
be used to cover any attack a ∈ A and (2) the number of tokens k (= |T |)
is less than the number of attacks n (= |A|). Thus, we prune away solutions
that do not fully utilize all the tokens. The fourth set of constraints ensure that
the probabilities of allocating various tokens to cover an attack a add up to the
probability that a is covered. The final set of constraints ensure that the attacker
selecting a∗ maximizes their utility. Lastly, note that given the values of pt,a one
can easily obtain pa using the fourth set of constraints.

To obtain the (globally) optimal solution (and thus find the optimal marginal
strategy) for the defender, we can iterate over all the n attack choices made by
the attacker and pick the solution that maximizes D’s utility. Note that, here
we enforce the attacker to select a pure strategy as opposed to a mixed strategy.
This is not a limitation since for any mixed strategy the attacker can pick in
this Stackelberg Game, there always exists a pure strategy in support of it [30].

As the number of VMs and vulnerabilities, i.e., n, increase, this solution
method needs to solve a large number of LPs. Thus, we now propose an efficient
MIQP that finds the solution in one go and provides an efficient branch-and-cut
algorithm for solving it in polynomial time.
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4.2 Compiling Multiple LPs into an Efficient Mixed Integer
Quadratic Program (MIQP)

Now, we first introduce n binary switch variables, one for each attack a ∈ A
and represent it as wa. When the attacker exploits vulnerability a (i.e. uses the
attack action a), wa = 1. Otherwise, wa = 0. We now propose the following
optimization problem,

max α · 1

k

∑
a∈A

UDc,apa + (1− α) · wa ∗ UDu,a(1− pa) (2)

s.t. wa ∈ {0, 1} ∀ a ∈ A
pa ∈ [0, 1] ∀ a ∈ A
pt,a ∈ [0, 1] ∀ a ∈ A, t ∈ T∑

a∈A
wa = 1∑

a∈A
pt,a = 1 ∀ t ∈ T∑

t∈T
pt,a = pa ∀ a ∈ A

0 ≤ va − (UAc,apa + UAu,a(1− pa)) ≤ (1− wa) ∗M ∀ a ∈ A

where M represents a large number with respect to the maximum reward the
attacker can get, i.e. M >> 10, and va is the utility value of the attacker at
equilibrium. The first constraint ensures that the switch variables are binary.
The fourth constraint enforces the attacker to select a pure strategy since the
switch variable corresponding to only one attack can be turned on in a feasible
solution. As mentioned in the previous section, this is not a limiting assumption.
Lastly, the final set of constraints encodes the complementary slackness condition
of the attacker’s utility maximization problem [30].

As the defender plays first, it can reason about the attacker picking each
attack and select the strategy which gives D the maximum reward. If the attacker
responds to the defender’s strategy with attack a∗, then wa∗ = 1. In that case,
the RHS of the last constraint (with a∗) becomes zero and along with the LHS,
equality holds. Thus, va∗ is A’s utility value. For all the other attacks a(6= a∗)
that were not selected by A, both the inequalities can be trivially satisfied (as
M is a large number) by selecting an appropriate value for va.

Theorem 1. MIQP defined in equation 2 produces the same solution as the set
of LPs described in equation 1.

Proof. Let us say that when attacker selects an attack a1, the defender gets
the highest utility as per equation 1. Now, let us say that equation 2 decides
that the defender’s utility is strictly better when attacker selects any another
attack a2(6= a1), and thus, wa2 = 1. Notice that if this is true, then the objective
function value of LP when a∗ = a2 is strictly greater than the objective function
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wa1 = 0 wa1 = 1

wa2 = 0 wa2 = 1

wan−1 = 0 wan−1 = 1

wan = 1

Fig. 2. Branch-and-cut tree for the proposed MIQP.

Attack a1 a2 a3 a4 a5

UDc,a -5.7 -10.0 0.0 0.0 0.0

UDu,a -6.4 -6.4 -2.9 -6.4 -2.9

UAc,a -8.6 -10 -8.6 -10 -10

UAu,a 6.8 7.5 4.3 7.5 5.0

Table 2. Player utilities for each vul-
nerability depending on whether (or
not) an IDS is deployed to detect the
attacks that exploit it.

t1 t2

a1 a2 a3 a4 a5

a1 a2 a3 a4 a5

t1 0 0.44 0 0.22 0.34

t2 0.45 0 0.34 0.21 0

Table 3. Probability of allocating a to-
ken (in order to deploy the correspond-
ing IDS) for detecting each attack.

value of the LP with a∗ = a1. But that is a contradiction. Hence, the MIQP
defined in equation 2 must select a1 for the attacker.

Similarly, we can prove the other way–that a solution that is optimal for the
MIQP (eqn. 2) is also optimal for the LP case. �

Theorem 2. MIQP defined in equation 2 can be solved in polynomial time with
the branch-and-cut method.

Proof. To prove this, we first represent the branch-and-cut tree for our MIQP
in fig. 2. In that, notice that the right children (shown in red) correspond to an
LP problem (similar to the one defined in equation 1) where only a particular
attack ai is selected (wai = 1) and other attacks are not used by the attacker.
Since no children of any right child (red node) can generate another solution,
the search tree below them can be pruned away. Now, the tree can have at most
n − 1 left children which correspond to at most n right children, which in turn
corresponds to at most n LP problems that need to be solved. Since each LP
can be solved in polynomial time and we will solve no more than n LPs, this
MIQP can be solved in polynomial time. �
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Start of
Round

{a2, a3}

{a2, a4}

{a2, a5}

{a3, a4}

{a3, a5}

{a1, a2}

{a1, a4}

{a1, a5}

0.124

0.118

0.092
0.112

0.096

0.101

0.195
0.153

t1

t2

a1

a2

a3

a4

a5

a1 a2 a3 a4 a5

t1 0 1 0 0 0

t2 0 0 0 0 1

a1 a2 a3 a4 a5

0 1 0 0 1

Fig. 3. Optimal mixed strategy of the defender for our scenario (when α = 0.1). The
probability values for picking up one of the eight IDS placements at the start of each
round are written on the edges. For the strategy {a2, a5} (colored in Pink), the alloca-
tion matrix is shown on the right.

4.3 Obtaining Implementable Strategies

Although we have obtained the values pa and pt,a, there are no guarantees that
we will be able to convert these marginal probabilities into

(
n
k

)
probability val-

ues that correspond to a defender’s deployment strategies, i.e. one that can be
implemented in practice. In order to convert these into implementable strategies,
we use the general version of the Birkhoff Von-Neumann Theorem as stated in
[25]. We state this here for completeness.
Birkhoff Von-Neumann Theorem. Consider an k × n matrix P with real
numbers pt,a ∈ [0, 1], such that for each 1 ≤ t ≤ k,

∑n
a=1 pt,a ≤ 1, and for each

1 ≤ a ≤ n,
∑k
t=1 pt,a ≤ 1. Then, there exist matrices P 1, P 2, . . . , P q and weights

w1, w2, . . . , wq ∈ (0, 1], such that (1)
∑q
x=1 w

x = 1; (2)
∑q
x=1 w

xP x = M ; (3)
for each 1 ≤ x ≤ q, the elements of Mx are pxt,a ∈ {0, 1} and (4) for each
1 ≤ x ≤ q, we have for each 1 ≤ t ≤ k,

∑n
a=1 p

x
t,a ≤ 1 and for each 1 ≤ a ≤ n,∑k

t=1 p
x
t,a ≤ 1.

This theorem guarantees that given the probability matrix pt,a, we can always
obtain the probabilities of the

(
n
k

)
implementable strategies. The third and fourth

equalities in the optimization problem in 1 ensure that the constraint structure
imposed on P is a bi-hierarchy, which authors in [4] show as a sufficient condition
for any marginal probability matrix P to be implementable.

For our example, assuming that the cost associated with deploying each IDS
on a certain VM is a function of the latency it creates. Furthermore, since VMs
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Input: Utility Matrix
Output: a∗

Result: Finds and outputs the most critical vulnerability that results in the
highest defender utility when fixed

max def util ← −∞;
a∗ ← None;
while a ∈ A do

A′ ← A \ a;
obj val, ← solve MIQP (2) with action set A′;
if obj val > max def util then

max def util ← obj val;
a∗ ← a;

end
return a∗

end
Algorithm 1: Algorithm to find the most critical vulnerability in the De-
fender’s system, which when fixed results in the highest utility.

that are responsible for communication between other VMs would impact the la-
tency the most when an IDS is placed on it. Thus, we assume time impact on the
overall latency of the system is equal to the normalized and scaled betweenness
centrality of the nodes in our network (∈ [0, 10]). With that, the utility values
for the attacker and defender are shown in table 2. We first use these values
to solve for the optimal marginal strategy (shown in Fig. 3) using the MIQP
described in 2. We then use Theorem 1 to obtain the mixed strategies that the
defender can actually use to deploy the IDS systems (shown in Fig. 3).

5 Identifying the Most Critical Vulnerability

In real-world scenarios, system administrators, who have a list of known vul-
nerabilities it should address, have limited developer resources to fix all of the
known CVEs in their system at once. Thus, the question of which vulnerability
they should fix in order to improve the security of the system is a critical one. In
our case, since (1) the rewards of the formulated game are not zero-sum and (2)
the defender wants to balance a multi-objective function (that tries to balance
the security and usability metrics), figuring out the (critical) vulnerability that
D needs to fix become even more difficult.

Given that we can find the utilities for the defender using equation 2, we can
ask the question which attack a when removed would produce the maximum utility
for D. A simple algorithm would be to iterate over all the attacks, removing them
one by one, reformulating the MIQP and selecting the attack that maximizes
the defender’s utility when removed. We describe this idea formally in algorithm
1 and use it to find the most critical vulnerability of our system. The utilities
obtained by removing one vulnerability at a time are shown below (for α = 0.1).
〈a1 : −1.90; a2 : −1.70; a3 : −2.30; a4 : −2.23; a5 : −2.27〉
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Thus, in our system, a2 is the most critical vulnerability since fixing a2 will
result in the highest (gain in) defender’s utility.

6 Experiments

We present the results of two different experiments– (1) comparison of our place-
ment strategy (Fig. 3) with existing approaches, and (2) implementation of the
Stackelberg Game Strategy (SGS) on a large cloud network instance.

6.1 Comparison with Existing Strategies

In this section, we compare our approach to three other MTD strategies in the
context of our running example where n = 5 and k = 2–

a1 a2 a3 a4 a5

URS 0.4 0.4 0.4 0.4 0.4

DPS 1 1 0 0 0

CBS 0.52 0.73 0.25 0.25 0.25

Fig. 4. Table showcasing the
marginal probabilities with
which IDS is places on a node
for the different strategies.

(1) Deterministic Pure Strategy (DPS). This
strategy selects a single pure strategy out of the(
5
2

)
placement strategies. As per work by [20], for

DPS, we place IDS to detect a1 and a2 (since G1
and G2 are the most critical VMs), which are on
the critical paths for any attack flow. Note that, in
the context of a stealthy attacker who can exploit
any vulnerability in the system, the definition of
a critical node, on which an IDS can be deployed,
is not clear. Thus, DPS has an inherent disadvan-
tage when compared to MTD strategies, which we now describe.
(2) Uniform Random Strategy (URS). In this case, we select each of the

(
5
2

)
placements or pure strategies with an equal probability of 0.1. In this case, each
attack a is covered in four (out of the ten) pure strategies since having placed an
IDS (or token which denotes an IDS was placed) for a, there are

(
4
1

)
= 4 ways

of placing the other token. Thus, the marginal probabilities are 0.1 ∗ 4 = 0.4.
(3) Centrality Based Strategy (CBS). This strategy, motivated in the work by
[42], has previously been shown to be effective for detecting stealthy bot-nets
when PageRank is used as a centrality measure. Since our network is an undi-
rected graph, we use the betweenness centrality measure for evaluation. Since
only two of our nodes (G1 and G2) have non-zero values for betweenness cen-
trality, we switch between seven of the ten configurations– three in which only
a1 is covered, three in which only a2 is covered and one in which both a1 and
a2 are covered. Since G1, on which a1 is present has a lower centrality value in
comparison to G2, on which a2 is present, the first three configurations are less
likely than the next three. The last configuration, in which both a1 and a2 are
covered, is the most likely configuration. The marginal probabilities for covering
each attack in the system, as per this strategy, is shown in Fig. 4.

Effectiveness of Our Approach We plot the defender’s utility value for our
approach and compare it to all the other approaches. The results are shown in
Fig. 5. When adversaries are strategic, i.e. can reason about defender strategies
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Fig. 5. Defender’s utility for the various MTD strategies as the security-usability trade-
off value (α) varies from zero to one.

and act rationally to maximize their utility, our method clearly dominates the
other methods (see the plots for CBS(min), URS(min) and DPS).

On the other hand, if the attacker is irrational, i.e., selects attacks that do
not maximize their profit, Stackelberg Equilibrium may not always be the best
strategy. We plot the best case for the other MTD strategies (see URS(max) and
CBS(max)) and it turns out that only URS is a little better when α ∈ (0, 0.37]. In
this range, our algorithm selects nodes with high centrality measure to improve
security in the case of a strategic attacker. This increases the deployment cost
and reduces the multi-objective function value, letting URS dominate. CBS on
the other hand with no information about the known attacks or performance
costs, switches only among the useless and performance expensive configurations,
being strictly dominated by SGS. Note that none of the mechanisms we compare
against adapt to the security and performance trade-off that is important to the
defender. Thus, as the value of α changes, the marginal probabilities for selecting
nodes using CBS, URS or DPS remain constant, resulting in straight line plots.
On the other hand, SGS, our intelligent switching mechanism, solves the multi-
objective optimization when coming up with its mixed strategy.

When α is low (i.e. ∈ [0, 0.29]), our method switches among eight out of the
ten pure strategies. As α increases further and the costs start to matter, it places
IDS systems more on nodes that impact performance the least. Beyond a certain
value (when α > 0.76) it realizes that the cost of placing IDS on G1 and G2 (for
detecting a1 and a2) are extremely high on the performance of the system and
sticks to only (three) strategies where neither G1 nor G2 is covered.

6.2 Testing on a Large Cloud Network

The setup comprised of 15 VMs and 42 CVEs distributed uniformly on a flat
network 10.0.0.0/24, as shown in the Fig. 6. In this experiment, we will measure
the throughput for the server (10.0.0.15) hosting an ssh application on port 5002
as the number of IDS systems placed increases. We now describe the different
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Fig. 6. Testing bandwidth on a flat network with 15 VMs and multiple Network and
Host Intrusion Detection Systems (NIDS and HIDS).

NIDS and HIDS agents pre-configured on the system with the known attack
signatures to detect the intrusion attempts.

Network-based IDS Snort [32] was configured to run in IDS (intrusion-
detection) as well as IPS (intrusion-prevention) mode. For instance, the attack
signature below checks the payload for shellcode targeting remote buffer overflow
vulnerability on ssh service running on port 5022.

a l e r t TCP any any −> 1 0 . 0 . 0 . 1 5 5002 (msg : ”EXPLOIT ssh remote
over f l ow ” ; content : ”/ bin / sh ” ; r e f e r e n c e : Bugtraq , 2 3 4 7 ;
r e f e r e n c e : cve ,2008−5161; s i d : 1 3 2 4 ; rev : 6 ; )

The AF packet, which is an IPS configuration, creates a bridge between
inspected interfaces (e.g., h1-eth1:s1-eth1). This leads to increased packet pro-
cessing latency since each packet on a particular bridge is inspected against all
traffic patterns which are part of signatures.

Host-based IDS auditd [18] was configured to monitor file integrity of configu-
ration files such as /etc/sshd conf and binary files for vulnerable services present
on the network. A daemon was configured on each inspected host to generate an
alert if there is a change in the hash value of inspected files.

The goal of this experiment was to measure the impact of the HIDS/NIDS
deployment on the throughput of the service being accessed by normal users.
We show that as D places more IDSs (1 to 15), we observe a substantial drop in
the throughput of the system from 18 Gbps to 6 Gbps (see Fig. 7). This shows
that deployment of IDS without considering the impact on network latency can
affect the Quality of Service (QoS) for legitimate users in a cloud network.

In Figure 8, we vary the number of IDS systems placed in the system and
see how the defender utilities vary. Initially, as the number of IDS increases
from 2 to 17, the defender’s utility increases at a slow rate since there are too
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few IDS systems to detect attacks on all the 42 vulnerabilities. As the number
of IDS systems are increased beyond 18, the defender’s utility starts to increase
substantially in each step. At this point, if the attacker does not pick their attack
strategically, it is detected with high probability. However, the placement of more
IDSs beyond a certain point (30) as shown in the Fig. 8, results in a substantial
decrease in throughput, outweighing the benefits of security provided by IDS.
Lastly, the most critical vulnerability found in this system was CVE-2013-2207.

7 Conclusion and Future Work

In this paper, we addressed the problem of placing a fixed number of IDS systems
in a large cloud environment by proposing a Moving Target Defense (MTD)
approach for shifting the detection surface. We formulated this problem as a
two-player general-sum Stackelberg Game between the cloud administrator (our
defender) and an attacker. We then designed two scalable algorithms that can
(1) find the Stackelberg Equilibrium of the formulated game, which lets the cloud
service provided a balance between the security and usability of their system,
and (2) find the most critical vulnerability in their system. We assumed that the
attacker is rational, i.e. he will try to exploit the known vulnerabilities present
of VMs in the cloud network by scanning the network. Also, a sophisticated
attacker may perform reconnaissance over an extended period of time and use
zero-day attacks that cannot be detected by IDS [38]. We plan to model these
types of attackers in the future.
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