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ABSTRACT

Researchers in the automated task planning community have proposed decision support systems
that can assist humans in their decision-making process. Although some of these works explain the
intricate details of building these systems, but their effectiveness is not supported by any human
factor studies. One of the major challenge in designing these user studies, has been getting access to
domain experts to verify the usefulness of the decision support system. In this paper, we borrow some
of the key features of automated planning for decision support and situate them in a domain (for
constructing a “plan of study” at Arizona State University) that graduate students can relate to. This
allows us to perform a comprehensive study of key elements of decision support techniques using
automated planning with domain experts (students) for a challenging task, thus helping us validate
key elements of the decision support paradigm. We analyze the data gathered from these experiments
to determine to what extent automated task planning technologies proposed in the existing literature
are effective as decision support systems for human-in-the-loop decision making.

The theory of decision support is built around the idea of enabling human decision makers make deci-
sions faster and more accurately with the added commitment to never take the decision making away
from the decision maker. The field of automated planning [1] – which aims to develop technologies
that can compute a plan or a course of action given a problem description – seems to be a perfect fit
for this endeavor. However, much of the effort in this field has focused on tackling the combinatorics
of the problem without much consideration of the human in the loop who may be involved in the plan
generation process itself and may even be the ultimate stakeholder of the plan. Our works on human-
in-the-loop planning such as [2, 3] treads these fine lines between the human as the decision maker
and the automated planner as the decision support. However, until now, effective synergy between the
human planner and the automated planner as conceptualized in RADAR [2] has not been established
through human factors studies that show demonstrable improvement in the collaborative planning
process through the use of automated planning technologies. The purpose of this paper is to do a case
study of two key components of RADAR – the ability to validate a given plan for correctness and the
ability to suggest a completion to a partial plan and demonstrate to what extent these components are
effective for collaborative planning.

iPass – System Overview

We begin with a brief description of the iPass interface and its decision support components.1

The iPOS Domain and Interface One of the major difficulties of designing user studies in the de-
cision support paradigm is access to domain experts who can verify the practical usefulness of the
system. Thus, earlier works that propose software to help the human in their decision making process
[2, 3] are unable to provide any empirical evidence as to how effective they are in practice. Thus, we
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Figure 1: Illustration of the iPass interface.

have designed a study in the domain of constructing an “interactive Plan of Study” (iPOS) at Arizona
State University. This has two implications. On one hand, this task is known to be challenging as per
(1) evidence in existing literature [4], and (2) its use in the International Planning Competition [5] as
a benchmark domain. On the other hand, graduate students are the experts in this domain, as they
already maintain their iPOS as per university requirements and are easily accessible in the university.
The interface (shown in Figure 1) has three panels – (1) the panel on the left shows the relevant in-
formation of the student (e.g. what deficiency courses they have, whether they are an international
student, if they are research or teaching assistants, etc.); (2) the central panel provides the student
with options to build the iPOS for the given student information. Actions in this panel can include
adding course, specialization, committee members, etc.; (3) the panel on the right provides an inter-
active interface to work on the plan (such as rearranging or deletion of action) along with relevant
information about the plan (e.g. difficulty or an average number of courses a semester, the total cost
of tuition for the current plan, etc.). This panel also houses the decision support components that, let’s
the user ask for validation of the current plan or suggestions to complete it. We describe these next.

Decision Support Components We cast the iPOS design problem as a planning problem written in
the popular Planning Domain Definition Language (PDDL) [6]. A planning problem consists of the
initial state (which captures the student information), domain (which captures the constraints of the
domain such as rules a student must follow) and the final goal (a complete plan of study). The solution
to a planning problem is a sequence of actions or a plan (which in this case, is the plan of study).
Based on the formulation of this task as a planning problem, we use a collection of automated plan-
ning technologies to provide support during the planning process while user constructs their iPOS.
� Plan Validation – Plan validation checks the correctness of the iPOS. We use VAL [7] to check if a
sub-plan (or plan) is executable in the planning domain and report validation error where needed.
For example, if a user attempts to validate a plan in which they select a committee chair who is outside
of the student’s specialization area, VAL will catch it and provide an appropriate error message.
� Plan Suggestion – It is used to come up with a completion of a partially filled out iPOS. In order to
do this, we use an existing compilation from [8], for a slightly different purpose (plan completion)
than originally intended (plan recognition). The compiler takes in the plan already constructed by the
student, turns them into observations that must be produced in a compiled version of the original
planning problem, and then solves it to give a complete iPOS. For example, a student can choose their
specialization and ask for suggestions that complete the rest of the course requirements and also select
a possible committee chair that satisfies that specialization.
� Plan Explanations – When requested by the user, the planner is also capable of providing expla-
nations for the suggested plan. It uses the technique of model reconciliation introduced in existing
literature [9]. This is done by assuming an empty model of the user (i.e. a user who is not familiar
with any of the constraints in the domain) and then providing a minimal subset of those constraints
that support the suggested plan. For example, one supporting constraint for choosing a particular
course may be that it is required by the selected specialization. Plan validation and explanations are
complementary in nature, as explanations provide details of the domain that support a plan whereas
validation points out constraints that invalidate a plan.
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Figure 2: Average time taken
(along with the standard devi-
ation) by a participant to com-
plete the two parts of the study
for every condition.

Figure 3: Time difference
∆T (Ci) between two tasks C1

i

and C2
i of iPOS planning for

every condition Ci.

Figure 4: Time taken by ex-
perienced (in yellow) and non-
experienced (in blue) users to
make the first iPOS (C1

i ).

Aim of the Study & Results

In order to determine the individual as well as the cumulative impact of the two decision support com-
ponents, we evaluated our interface in four conditions – [C0] Both validation and suggestion capabil-
ities are absent. The users do have to pass correctness before they can submit, [C1] Only validation
capability is enabled, [C2] Only suggestion capability is enabled, [C3] Both validation and suggestion
options are available. Furthermore, each participant assigned to one of the study conditions Ci per-
formed the iPOS planning task twice (with different, randomly generated, student information). We
thus, have two sub-conditions (denoted using the super-script) C1

i and C2
i for every condition i.

The study was conducted on the university premises. Each subject was given $15 for an hour of study
when they used iPass software to make two iPOS. At the start of the study, participants were informed
that they would be asked to explain each iPOS with the hope that it will help them be more invested
in the task [10]. Then they were given a document explaining the planning domain and another docu-
ment explaining the functionality of the elements in the interface. They were given 20 minutes to make
each iPOS, after which they were presented with a feedback form. We had a total of 56 participants, out
of which six were undergraduates and the rest were graduate students. A total of 18 participants had
submitted an iPOS before. The participants were evenly distributed among the four study conditions.
Given the setup, we now present the three hypothesis and the results for each one of them.

Hypothesis H1: Time to complete an iPOS and satisfaction about finalized plan follow a particular
order. H1a. – Time to complete an iPOS follows the order T (C0) > T (C1), T (C2) > T (C3), where
T (Ci) represents the time to complete the iPOS in condition i. We show the average time a participant
took to complete the first and the second iPOS and submit their feedback2 in Figure 2. The data shows
a significant improvement in performance with regards to time as one goes from C0 to C3 (p < 0.05
for the first and p < 0.01 for the second iPOS) showing that the automated planning technologies in
conjunction helped in improving the efficiency of the decision making process. Unfortunately, there
was no significant improvement seen in performance from (1) C0 to C1 or C2 and (2) C1 or C2 to C3.
Thus, hypothesis H1a was found to be partially true, thereby showing that all the planning technologies
and not a subset of them were necessary to improve the planning performance for the user.
H1b. – User satisfaction for the constructed iPOS will follow the order S(C0) < S(C1), S(C2) < S(C3),
where S(Ci) represents the degree of satisfaction as provided by the user for subjective questions. In
Figure 6, we show the answers of the users to the subjective statement Q3: I am happy with the final
Plan of Study on the Likert Scale for all the four conditions. In C0, we noticed that the least number
of users agreed (either agreed or strongly agreed) with the statement. This is not surprising because
many users were not even able to come up with a valid plan of study without any planning support in
C0. For C1, six participants said they were in unison with the statement Q3 and For C2 and C3, half of
the participants were happier (i.e. either agreed or strongly agreed) with their plan of study, which is
the highest across all the four conditions. But, in C2 there was one participant who strongly disagreed
with the statement, while for C3 there were none. Thus, the hypothesis H1b holds.
H1c. – User satisfaction with the feedback from the interface will follow the same order as H1b. In
Figure 7, we show the number of users who agreed with the ratings on the Likert Scale for the statement
Q2: The feedback from the interface helped the iPOS making process. If we let nCi denote the number of
participants who either agree or strongly agree with the statement, then the following relation holds,
nC0 < nC1 , nC2 ≤ nC3 . Although the equality holds nC1 and nC3 , the number of people who strongly
agreed to the statement was, by far, the highest for C3. Thus, we infer that the hypothesis H1c holds.

2Since feedback was part of all the conditions, this is indicative of, even though not the actual, planning time.
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Figure 5: Feedback of non-
experienced users about the
statement ‘Q1: The planning
task was pretty simple for me’
for each condition C1

i .

Figure 6: Average score for sub-
jective ‘Q3: I am happy with the
final iPOS’ for conditions C1

i .

Figure 7: User agreement met-
rics for the statement ‘Q2: The
feedback from the interface
helped the iPOS making pro-
cess’ for each condition C1

i .

Hypothesis H2: Time to complete the plan will reduce in the second attempt We plot the average
decrease in time in completing the second iPOS after doing the first iPOS with iPass for all the four
study conditions in Figure 3. The lowest reduction in time for C0 shows that feedback given to the user
by the decision support system helps them learn more about the domain model, thereby improving
their performance in making the second iPOS. We also saw that the highest reduction in time occurred
for the conditions C1 (p < 0.1) and C3 (p < 0.01). We feel that the presence of plan validation in both
these conditions informed the users about the reason behind each error they made while construct-
ing the first iPOS that was effective in teaching the users about the actual domain. Due to a similar
reason, we had also hypothesized that the presence of plan explanations in C2 and C3 will reduce the
time significantly because these explanations will teach the user about the domain, thus reconciling
the models. Unfortunately, this functionality was used very rarely (0.14 and 0.91 average number of
times for C2 and C3) and thus, improvement in performance was not observed. Hence, H2 was only
found to be partially true, supporting the cause that use of automated planningC3 for decision support
improved the efficiency of the human thereby reduced the time for making the second iPOS.

Hypothesis H3: Less expert users benefit more from decision support components We noticed
that the performance (time) was not significantly better for participants who had filled an iPOS before
when compared to participants with no experience (Figure 4). Although the experienced participants
did perform slightly better in C0, C1 and C3, to our surprise, we noticed that for C2, the users who had
no prior experience performed better. This might be because the latter group had prior conceptions
about the rules of making an iPOS and thus, spent time making plans that appeared valid in their
model, but were invalid in the iPass domain. With the presence of ‘validate’ in C1, they might have
ended up having to correct their partial plans multiple times, resulting in a longer time and worse
performance.
We plot the response of non-experienced users to the subjective question Q1: The planning task was
pretty simple for me in Figure 5. Interestingly, the non-experienced users seemed to agree (or strongly
agree) more with the statement in C3 compared to C0, indicating that support features have con-
tributed to decrease in perceived difficulty of the task.

Conclusion

In summary, we found that two key decision support components – validation and suggestion – for
human-in-the-loop planning tasks were, in general, useful in improving the performance and/or sat-
isfaction of the decision-maker. From the written feedback, we noticed that 11 people asked for more
feedback from the interface in C0 (3 of whom mentioned suggestion feedback and 5 mentioned val-
idation feedback) thus highlighting the role of the evaluated support components in the normative
expectations of the user. These results provide partial validation about the effectiveness of using au-
tomated planning-based decision support systems in expert driven domains.
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