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Abstract—Recent work in explanation generation for decision
making agents has looked at how unexplained behavior of
autonomous systems can be understood in terms of differences
in the model of the system and the human’s understanding of
the same, and how the explanation process as a result of this
mismatch can be then seen as a process of reconciliation of these
models. Existing algorithms in such settings, while having been
built on contrastive, selective and social properties of explanations
as studied extensively in the psychology literature, have not,
to the best of our knowledge, been evaluated in settings with
actual humans in the loop. As such, the applicability of such
explanations to human-AI and human-robot interactions remains
suspect. In this paper, we set out to evaluate these explanation
generation algorithms in a series of studies in a mock search and
rescue scenario with an internal semi-autonomous robot and an
external human commander. During that process, we hope to
demonstrate to what extent the properties of these algorithms
hold as they are evaluated by humans.

Index Terms—Explainable AI, planning and decision-making,
human-robot interaction, explanations as model reconciliation.

I. INTRODUCTION

The issue of explanations for AI systems operating along-
side or with humans in the loop has been a topic of consid-
erable interest of late [1], [2], especially as more and more
AI-enabled components get deployed into hitherto human-
only workflows. The ability to generate explanations holds
the key [3], [4] towards acceptance of AI-based systems in
collaborations with humans. Indeed, in many cases, this may
even be required by law [5].

Of course, the answer to what constitutes a valid, or
even useful, explanation largely depends on the type of AI-
algorithm in question. Recent works [7]–[9] have attempted
to address that question in the context of human-robot in-
teractions [10] by formulating the process of explaining the
decisions of an autonomous agent as a model reconciliation
process whereby the agent tries to bring the human in the
loop to a shared understanding of the current situation so
as to explain its decisions in that updated model. This is
illustrated in Figure 1a. While these techniques have been
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developed on theories in the psychology literature [11], [12]
built on extensive studies in how humans explain behavior,
none of these algorithms have, to the best of our knowledge,
been evaluated yet with humans in the loop. As such, it
remains unclear whether the theoretical guarantees provided
by explanations generated by such algorithms do, in fact, bear
out during interactions with humans.

The aim of this paper is then to provide an empirical
study of the “explanation as model reconciliation” process,
especially as it relates to a human-robot dyad in a mock up
version of a typical search and rescue scenario (Section IV)
which has been used extensively as an illustrative scenario in
existing literature [8], [9]. But before we go there, we provide
a brief overview of explanations (Section II) in the planning
community and a glossary of relevant terms (Section III).

II. A BRIEF HISTORY OF EXPLAINABLE PLANNING

From the perspective of planning and decision making, the
notion of explanations was first explored extensively in the
context of expert systems [13]. Similar techniques have been
looked at for explanations in case based planning systems
[14], [15] and in interactive planning [16] where the planner
is mostly concerned with establishing the correctness [17] and
quality [18], [19] of a given plan with respect to its own model.
These explanation generation techniques served more as a
debugging system for an expert user rather than explanations
for situations generally encountered in everyday interactions,
which may be referred to as “everyday explanations” [20]. A
key difference here is that the former is mostly algorithm de-
pendent and explains the how of the decision making process
whereas the latter is model-based and algorithm-independent
and thus explain the why of a particular decision in terms of
the knowledge that engendered it.

In [21] authors argued that, in a classic case of “inmates
running the asylum”, most of the existing literature on expla-
nation generation techniques for AI systems are based on the
developer’s intuitions rather than any principled understanding
of the normative explanation process in interactions among
humans as has been studied extensively in the fields of phi-
losophy, cognitive science, and social psychology. The authors
note that the latter can be a valuable resource for the design
of explanation generation techniques in AI systems as well.



(a) (b)

Fig. 1: Illustration of a typical [6] urban search and reconnaissance (USAR) scenario with an internal semi-autonomous robot
and an external human supervisor. The supervisor has restricted access to a changing environment – thus models (e.g. map of
the environment) may diverge in the course of the operation due to the disaster. In this situation, the robot can either choose
to generate explicable plans by conforming to the expectations of the human or explain its plans in terms of their model
differences via the model reconciliation process (as illustrated in inset 1a). We make use of this setting to study the properties
of “model-reconciliation” explanations in a mock interface (Figure 5) to the robot (derived from the interface in inset 1b).

The authors in [20] state the three most important properties
of explanations (as accounted for in the existing literature in
the social sciences) as being (1) contrastive (so as to be able
to compare the fact being questioned with other alternatives
or foils); (2) selective (of what information among many to
attribute causality of an event to); and (3) social (implying that
the explainer must be able to leverage the mental model of the
explainee while engaging in the explanation process). In our
recent work [7] on explanation generation for planners, we
expressed similar sentiments by arguing that the explanation
process towards end users “cannot be a soliloquy” but rather
a process of “model reconciliation” during which the system
tries to bring the mental model (social property) of the user
on the same page with respect to the plan being explained.
We addressed the contrastive property by ensuring optimality
of the plan being explained in the updated human mental
model, and the selectivity property by computing the minimum
number of updates required to realize the contrast.

The robotics and planning community has indeed seen
active research in dealing with such model differences, such
as in expressing incapability [22]–[25], communicating mis-
understandings about the robot’s capabilities [7], [8] or even
lying [26] and augmenting new goals [27]. A concise survey
of the model reconciliation process can be found in [28].

In related threads [29] of work, we have looked at the
notion of “explicable” planning [30], [31] which circumvents
the need for explanations by instead having the robot sacrifice
optimality in its own model and produce plans that are as close
to optimal as possible in the mental model of the human. Of
course, such plans may be too costly or even infeasible from
the robot’s perspective. As such, the process of explicability
and explanations form a delicate balancing act [8] during the
deliberative process and forms a basis of an augmentative
theory [32] of planning for an automated agent.

The process of explanations and explicability for task plans,
in general, is also a harder process than in motion planning
(c.f. recent works on “legibility” [33] and “verbalization” [34])
where acceptable behavior can be understood in terms of

simple rules (e.g. minimizing distance to shortest path). In
the case of task planning, human mental models are harder
to acquire and thus must be learned [30]. Further, given
a mental model of the user, it is still a challenge on how
to leverage that model in the explanation process, keeping
in mind the cognitive abilities and implicit processes and
preferences of the human in the loop that are often very hard,
or even impossible, to codify precisely in the task model itself.
Evaluation of learned mental models is out of scope1 of the
current discussion, though readers are encouraged to refer to
[29], [30] for related studies. In this paper, we will focus only
on known models, and explore how humans respond to these
techniques in situations where these models diverge.

III. GLOSSARY OF TERMS

Existing teamwork literature [37] on human-human and
human-animal teams has identified characteristics of effective
teams – in terms of shared mental models [38], [39] that
contribute to team situational awareness [40] and interaction
[41]. Thus, it has been argued [10] that the ability to leverage
these shared mental models, and reasoning over multiple
models at a time, during the decision making process is
critical to the effective design of cognitive robotic agents for
teaming with humans. The multi-model setting is illustrated
in Figure 1a in the context of a search and rescue scenario
(more on this later in Section IV) where the map of the
environment shared across the robot and its operator diverge
in course of operations. When making plans in such scenarios,
the robot can choose to either (1) conform to human expecta-
tions, potentially sacrificing optimality in the process; or (2)
preserve optimality and explain its plan (which may thus be
inexplicable) in terms of the model differences (that causes

1The evaluations, of course, have the same assumptions (and limitations) as
the original works on model reconciliation. However, there has been follow
up work that relaxes those assumptions (e.g. conformant explanations [35] for
model uncertainty and hierarchical explanations [36] for varying degrees of
information) without affecting the output of model reconciliation. Thus, our
experimental setup remains valid.



this inexplicability). As explained before, the former process
is described as explicable planning, while the latter is referred
to as explanations as model reconciliation.

A. Explicable Plans

Let the model (which includes beliefs or state information
and desires or goals as well as the action model) that the robot
is using to plan be given by MR and the human’s under-
standing of the same be given by MH

R . Further, let π∗(MR)
and π∗(MH

R ) be the optimal plans in the respective models,
and CM(·) be the (cost) function denoting the goodness of
a plan in a model M. When MH

R 6= MR, it is conceivable
that CMH

R
(π∗(MR)) > CMH

R
(π∗(MH

R )) which constitutes
an inexplicable behavior from the perspective of the human.

In explicable planning, the robot produces a plan π such
that CMH

R
(π) ≈ CMH

R
(π∗(MH

R )), i.e. an explicable plan is
equivalent (or as close as possible) to the human expectation.

B. Plan Explanations as Model Reconciliation

Instead, the robot can stay optimal in its own model, and
explain the reasons, i.e. model differences, that causes its plan
to be suboptimal in the human’s mental model.

The Model Reconciliation Problem (MRP) involves the
robot providing an explanation or model update E to the
human so that in the new updated human mental model
M̂H

R the original plan is optimal (and hence explicable), i.e.
CM̂H

R
(π∗(MH

R )) = CM̂H
R
(π∗(MR))

2.

Of course, there may be many different types of these expla-
nations, as explained below (terms reused from [7]).

1) Model Patch Explanations (MPE): Providing the entire
model difference as a model update is a trivial solution.
It satisfies the optimality criterion but may be too large
when the robot has to operate with reduced communication
bandwidth. It can also cause loss of situational awareness and
increased cognitive load of the human by providing too much
information that is not relevant to the plan being explained.

2) Plan Patch Explanations (PPE): These restrict model
changes to only those actions that appear in the plan. These do
not satisfy the optimality criterion but ensure the executability
of the given plan instead. Further, they may still contain
information that is not relevant to explaining the original robot
plan as opposed to the human expectation or foil.

In this paper, we use a specific variant of PPE which
contrasts executability with a particular expected human plan.
Thus it may still not preserve optimality, but retains the
contrastive property of an explanation.

3) Minimally Complete Explanations (MCE): These expla-
nations, on top of satisfying the optimality condition, also
enforce min E . This means MCEs not only make sure that the
plan being explained is optimal in the updated model but also
it is the minimum set of updates required to make this happen.

2We refer to this constraint as “the optimality condition” and the explana-
tions that satisfy this condition are called complete explanations.

This is especially useful in reducing irrelevant information
during the explanation process both from the perspective of the
human as well as the robot when communication is expensive.

4) Minimally Monotonic Explanations (MME): Interest-
ingly, MCEs can become invalid when combined, i.e. when
multiple plans are being explained, the current MCE can make
a previous one violate the optimality constraint. This leads to
the notion of MMEs which guarantee that an explanation is
always valid regardless of other plans being explained in the
future (while at the same time revealing as little information
as possible). This is especially useful in long term interactions
and is out of scope of the current study.

C. Balancing Explicability and Explanations

Finally, as mentioned before, these ideas can come together
whereby an agent can choose to trade off the cost of ex-
planations versus the cost of producing explicable plans by
performing model space search during the plan generation
process [8]. In the following studies, we simulate such an
agent that generates plans that are either optimal in its own
model (with an associated MCE, MPE or PPE) or explicable
or somewhere in between (with an associated MCE).

IV. TESTBED: THE USAR DOMAIN

An application where such multi-model formulations are
quite useful is in typical [6] Urban Search And Reconnaissance
(USAR) tasks where a remote robot is put into disaster re-
sponse operation often controlled partly or fully by an external
human commander who orchestrates the entire operation. The
robot’s job in such scenarios is to infiltrate areas that may be
otherwise harmful to humans, and report on its surroundings as
and when required / instructed by the external supervisor. The
external usually has a map of the environment, but this map
may no longer be accurate in the event of the disaster – e.g.
new paths may have opened up, or older paths may no longer
be available, due to rubble from collapsed structures like walls
and doors. The robot (internal) however may not need to
inform the external of all these changes so as not to cause
information overload of the commander who may be otherwise
engaged in orchestrating the entire operation. The robot is
thus delegated high level tasks but is often left to compute
the plans itself since it may have a better understanding of
the environment. However, the robot’s actions also contribute
to the overall situational awareness of the external, who
may require explanations on the robots plans when neces-
sary. As such, simulated USAR scenarios provide an ideal
testbed for developing and evaluating algorithms for effective
human-robot interaction. Figure 1b illustrates our setup (c.f.
https://youtu.be/40Xol2GY7zE) In the current study, we only
simulate the interface to the external (Section VI).

Differences in the models of the human and the robot can
manifest in many forms (e.g. the robot may have lost some
capability or its goals may have changed). In our setup, we
deal with differences in the map of the environment as avail-
able to the two agents – these can be compiled to differences
only in the initial state of the planning problem (the human



(a) Interface for Study-1

(b) Study-1:C1 (c) Study-1:C2

(d) Explanation counts for Study-1:C:1-2.

Fig. 2: In Study-1, participants assumed the role of the internal agent and were asked to explain their plan to a teammate with
a possibly different model or map of the world.

model has the original unaffected model of the world). This
makes no difference to the underlying explanation generation
algorithm [7] which treats all model changes equally.

While the availability of models (as required by all the
algorithms in III) may be a strong assumption in some cases, in
domains such as USAR this is, indeed, the case since teams in
such scenarios start off with a shared model (e.g. blueprint of
a building). The USAR domain is also ideal for visualizing
to non-expert participants, in comparison to, for example,
logistics-type domains which should ideally be evaluated by
experts. This became an important factor while designing the
user studies. The USAR domain is thus at once close to
motion planning as easily interpreted by non-experts but also
incorporates typical combinatorial aspects of task plans such as
preconditions and effects in terms of rubble removal, collapsed
halls, etc. and relevant abilities of the robot.

V. STUDY – 1
The first part of the study aims to develop an understanding

of how humans respond to the task of generating explanations,
i.e. if left to themselves, humans preferred to generate expla-
nations similar to the ones enumerated in Section III-B. To test
this, we asked participants to assume the role of the internal
agent in the explanation process and explain their plans with
respect to the faulty map of their teammate. Specifically, we
set out to test the following hypothesis –
H1. When asked to, participants would leverage model differ-

ences as a key ingredient for explanations.
H1a. Explanation generated by participants would demon-

strate contrastiveness. Thus, PPE type explanations
would be overlooked in favor of complete solutions
(MCEs and MPEs) when there are multiple compet-
ing hypothesis for the human.

H2. Participants would like to minimize the content of the
explanation by removing details that are not relevant to
the plan being explained.

H2a. Explanations generated by humans would be closer
to MCEs than MPEs.

H2b. This should be even more significant if restrictions
are placed on communication.

As a result of this study, we intend to identify to what
extent explanation types for task planning studied in existing
literature (Section III-B) that claim to build upon principles
of explanations in human-human interactions studied in social
sciences [20] truly reflect human intuition.

Note that we primed the subjects to annotate changes in the
map, while giving them the opportunity to –

1. Provide more than annotations (and we did find other
interesting kinds of explanations emerge as we discuss
later in Section VII)

2. Comment on the sufficiency and necessity of such expla-
nations (as we report in Section V-B)

The reason for this choice was because in the work be-
ing evaluated here (c.f. Section III), communicating model
differences has been considered to be the starting point of
the explanation process. So we start from that assumption
and evaluate whether the kinds of explanations introduced in
existing literature – MCE / MPE / PPE / etc. – are actually
useful. Additionally, this setup also helps to re-contextualize
the real importance of model difference in the explanation
process in light of reasons explained in (1) and (2) above.

A. Experimental Setup
Figure 2a shows an example map and plan provided to a

participant. On left side, the participant is shown the actual
map along with the plan, starting position and the goal. The
panel on the right shows the map that is available to the
explainee. The maps have rubbles (both removable and non-
removable) blocking access to certain paths. The maps may
disagree as to the locations of the debris. The participants were
told that they need to convince the explainee of the correctness
and optimality of the given plan by updating the latter’s maps
with annotations they felt were relevant in achieving that goal.
We ran the study with two conditions –
C1. Here the participants were asked to ensure, via their

explanations, that their plan was (1) correct and (2)
optimal in the updated model of their teammate; and

C2. Here, in addition to C1, they were also asked to use the
minimal amount of information they felt was needed to
achieve the condition in C1.



Each participant was shown how to annotate (not an ex-
planation) a sample map and was then asked to explain 12
different plans using similar annotations. After each participant
was finished with their assignment, they were asked the
following subjective questions –
Q1. Providing map updates were necessary to explain my plans.
Q2. Providing map updates were sufficient to explain my plans.
Q3. I found that my plans were easy to explain.

The answers to these questions were measured using a five-
point Likert scale. The answers to the first two questions will
help to establish whether humans considered map updates (or
in general updates on the model differences) at all necessary
and/or sufficient to explain a given plan. The final question
measures whether the participants found the explanation pro-
cess using model differences tractable. It is important to note
that in this setting we do not measure the efficacy of these
explanations (this is the subject of Study-2 in Section VI).
Rather we are trying to find whether a human explainer
would have naturally participated in the model reconciliation
approach during the explanation process.

In total, we had 12 participants for condition C1 and 10
participants for condition C2 including 7 female and 18 male
participants between the age range of 18-29 (data correspond-
ing to 5 participants who misinterpreted the instructions had to
be removed, 2 participants did not reveal their demographics).
Participants for the study were recruited by requesting the
department secretary to send an email to the student body
to ensure that they had no prior knowledge about the study or
its relevance. Each participant was paid $10 for taking part.

B. Results

The results of the study are presented in Figures 2d, 3 and
4. We summarize some of the major findings below –

Figure 2d – The first hypothesis we tested was whether the
explanations generated by the humans matched any of the
explanation types discussed in Section III-B. We did this by
going through all the individual explanations provided by the
participants and then categorizing each explanation to one of
the four types, namely MCE, PPE, MPE or Other (the ”other”
group contains explanations that do not correspond to any
of the predefined explanation types – more on this later in
Section VII). Figure 2b shows the number of explanations of
each type that were provided by the participants of C1. The
graph shows a clear preference for MPE, i.e. providing all
model differences. A possible reason for this may be since
the size of MPEs for the given maps were not too large (and
participants did not have time constraints). Interestingly, in
C2 we see a clear shift in preferences (Figure 2c) where most
participants ended up generating MCE style explanations. This
means at least for scenarios where there are constraints on
communication, the humans would prefer generating MCEs
as opposed to explaining all the model differences.

These findings are consistent with H1, with very few of
the explanations in type “Other” (Figure 2d). This is also
backed up by answers to subjective questions Q1 and Q2
above. Further, the preference of MPE/MCE over PPE (H1a)

Fig. 3: Subjective responses of participants in Study-1:C1.

Fig. 4: Subjective responses of participants in Study-1:C2.

is quite stark. Contrary to H2a, participants seemed to have
preferred full model explanation (MPE) in C1 condition which
is surprising. However, results of C2 condition are more
aligned with H2b, even though we expected to see similar
trend (if not as strong) in C1 condition as well.

Figures 3 and 4 – These show the results of the subjective
questions for C1 and C2 respectively. Interestingly, in C1,
while most people agreed on the necessity of explanations
in the form of model differences, they were less confident
regarding the sufficiency of such explanations. In fact, we
found that many participants left additional explanations in
their worksheet in the form of free text (we discuss some of
these findings in Section VII). In C2, we still see that more
people are convinced about the necessity of these explanations
than sufficiency. But we see a reduction in the confidence of
the participants, which may have been caused by the additional
minimization constraints.

VI. STUDY – 2

Here we study how different kinds of explanations outlined
in Section III-B are perceived or evaluated when they are pre-
sented to the participants. This study was designed to provide
clues to how humans comprehend explanations when provided
to them in the form of model differences. Specifically, we
intend to evaluate the following hypothesis, in line with the
intended properties of each of the explanation and plan types
in existing literature (Section III-B) –

H1. Participants would be able to identify optimality of a plan
given an MPE or an MCE.

H2. Participants would be able to identify executability but
possible suboptimality of a plan given a PPE.



Fig. 5: Interface for Study-2 where participants assumed the
role of the external commander and evaluated plans provided
by the internal robot. They could request for plans and
explanations to those plans (if not satisfied) and rate them
as optimal or suboptimal or (if unsatisfied) can chose to pass.

H3. Participants would not ask for explanations when pre-
sented with explicable plans.

As a result of this study, we intend to validate whether
desired properties of explanations for task planning designed
by following norms and principles outlines in the social
sciences in the context of human-human interactions [20] do
actually carry over for human-robot interactions.

A. Experimental Setup

During this study, participants were incentivized to make
sure that the explanation does indeed help them understand
the optimality and correctness of the plans in question by
formulating the interaction in the form of a game.

Figure 5 shows a screenshot of the interface. The game
displays to each participant an initial map (which they are
told may differ from the robot’s actual map), the starting
point and the goal. Once the player asks for a plan, the robot
responds with a plan illustrated as a series of paths through
waypoints highlighted on the map. The goal of the participant
is to identify if the plan shown is optimal or just satisficing. If
the player is unsure of the path, they can ask for an explanation
from the robot. The explanation is provided to the participant
in the form of a set of model changes in the player’s map. If
the player is still unsure, they can click on the pass button to
move to the next map.

The scoring scheme for the game is as follows. Each player
is awarded 50 points for correctly identifying the plan as either
optimal or satisficing. Incorrectly identifying an optimal plan
as suboptimal or vice versa would cost them 20 points. Every
request for explanation would further cost them 5 points, while
skipping a map does not result in any penalty. The participants
were additionally told that selecting an inexecutable plan as
either feasible or optimal would result in a penalty of 400
points. Even though there were no actual incorrect plans in
the dataset, this information was provided to deter participants
from taking chances with plans they did not understand well.

Each participant was paid $10 dollars and received addi-
tional bonuses based on the following payment scheme –

- Scores higher than or equal to 540 were paid $10.
- Scores higher than 540 and 440 were paid $7.
- Scores higher than 440 and 340 were paid $5.
- Scores higher than 340 and 240 were paid $3.
- Scores below 240 received no bonuses.
The scoring systems for the game was designed to ensure
• Participants should only ask for an explanation when they

are unsure about the quality of the plan (due to small
negative points on explanations).

• Participants are incentivized to identify the feasibility and
optimality of the given plan correctly (large reward and
penalty on doing this wrongly).

Each participant was shown a total of 12 maps (same
maps as in Study–1). For 6 of the 12 maps, the player
was assigned the optimal robot plan, and when they asked
for an explanation, they were randomly shown either MCE,
PPE or MPE explanation with regards to the robot model
(as per algorithms described in Section III-B). For the rest
of the maps, participants could potentially be assigned a
plan that is optimal in the human model (i.e. an explicable
plan) or somewhere in between as introduced in Section III-C
(referred to henceforth as the balanced plan) in place of the
robot optimal plan3. The participants that were assigned the
optimal robot plan were still provided an MCE, PPE or MPE
explanation, otherwise they were provided either the shorter
explanation (for balanced plans) or an empty explanation (for
the explicable plan). Also note that for 4 out of the 12 maps
the PPE explanation cannot prove the optimality of the plan.

At the end of the study, each participant was presented with
a series of subjective questions. The responses to each question
were measured on a five-point Likert scale.
Q1. The explanations provided by the robot was helpful.
Q2. The explanations provided by the robot was easy to understand.
Q3. I was satisfied with the explanations.
Q4. I trust the robot to work on its own.
Q5. My trust in the robot increased during the study.

In total, we had 27 participants for Study–2, including 4
female and 22 male participants between the age range of 19-
31 (1 participant did not reveal their demographic).

B. Results

The results of the study are presented in Figures 6, 7 and
8. We summarize some of the major findings below –

Figure 6 – As we mentioned before, the goal of this study is
to identify if explanations in the form of model reconciliation
can convey to humans the optimality and correctness of plans.
Here, each participant was shown the 12 maps from Study-1
and each map was assigned a random explanation type (and in
some cases different plans). We wanted to identify whether the
participants that asked for explanations were able to come up
with the correct conclusions. This means that the subjects who

3Note that of the 6 maps, only 3 had both balanced as well as explicable
plans, the rest either had a balanced plan or the optimal human plan.



(a) (b)

Fig. 6: Percentage of times (inset 6a) different explanations (i.e. MCE / MPE / PPE) led to correct decision on the human’s
part in each problem (the aggregated result is shown on the right). A “correct decision” involves recognizing optimality of the
robot plan on being presented an MCE or MPE, and optimality or executability (as the case may be) in case of a PPE. Inset
6b illustrates this flow of logic in the experimental setup.

Fig. 7: Subjective responses of participants in Study–2.

Fig. 8: Percentage of times explanations were sought for in
Study–2 when participants presented with explicable plans
versus robot optimal plans with explanations.

asked for MCE and MPE were able to correctly identify the
plans as optimal, while the people who received PPE were able
to correctly classify the plan to either optimal or satisficing
(i.e. for all but 5 maps PPE is enough to prove optimality).

Figure 6a shows the statistics of the selections made by
participants who had requested an explanation. The right side
of the graph shows the percentage (for every map instance)
of participants who selected the correct options (marked in
blue), the incorrect ones (marked in red) or simply passed
(marked in orange), while the left side shows the average
across all 12 maps. We notice that in general people were

overwhelmingly able to identify the correct choice. Even in the
case of PPEs, where the explanations only ensured correctness
(map instances 1, 2, 3, 8 and 11) the participants were able
to make the right choice. This is consistent with H1 and
H2 and demonstrates that explanations in the form of model
reconciliation are a viable means of conveying the correctness
and optimality of plans – i.e. participants can differentiate
between complete and non-complete explanations.

Figure 7 – These conclusions are further supported by results
from the subjective questionnaire (Figure 7). Most people
seem to agree that the explanations were helpful and easy
to understand. In fact, the majority of people strongly agreed
that their trust of the robot increased during the study.

Figure 8 – We were also curious (H3) about the usefulness
of explicable plans (that are optimal in human’s model), i.e.
if the subjects still asked for explanations when presented
with explicable plans. Figure 8 shows the percentage of
times subjects asked for explanations when presented with
explicable versus robot optimal plans. The rate of explanations
is considerably less in case of explicable plans as desired. This
matches the intuition behind the notion of plan explicability
as a viable means (in addition to explanations) of dealing with
model divergence in human-in-the-loop operation of robots.

It is interesting to see that in Figure 8 about a third of
the time participants still asked for explanations even when
the plan was explicable, and thus optimal in their map. This
is an artifact of the risk-averse behavior incentivized by the
gamification of the explanation process. This is to make sure
that participants were sufficiently invested in the outcome as
well as mimic the high-stakes nature of USAR settings to
accurately evaluate the explanations. It is also an indication



TABLE I: Summary of results.

Study Hypothesis Outcome Comments

Study-1

H1 3 Participants largely agreed that model reconciliation was a necessary and sufficient part of the explanation process.

H1a 3 Participants preferred explanations that are complete, and preserve contrastive property across multiple hypothesis.

H2 7 Participants did not care to minimize size of explanations, i.e. exclude irrelevant details.

H2a 7 Explanations in the free form condition were largely of MPE type.

H2b 3 Participants did generate MCEs when their communication capability was explicitly restricted.

Study-2
H1 3 Participants could identify plan optimality in response to complete explanations.

H2 3 Participants could identify suboptimality for incomplete explanations.

H3 3 / ? Some participants asked for explanations even for explicable plans, though the majority did not.

of the cognitive burden on the humans who may not be (cost)
optimal planners. While this is consistent with the spirit of
H3, the finding is also somewhat indicative of the limitations
of plan explicability as it is defined in existing literature at
the moment [8]. Thus, going forward, the objective function
should incorporate the cost or difficulty of analyzing the plans
and explanations from the point of view of the human in
addition to the current costs of explicability and explanations
modeled from the perspective of the robot.

Interestingly, the participants also did not ask for explana-
tions around 40% of the time (c.f. Figure 8) when they “should
have” (i.e. suboptimal plan in the human model) according
to the theory of model reconciliation. We noticed no clear
trend here (e.g. decreasing rate for explanations asked due
to increasing trust). This was most likely due to limitations of
inferential capability of humans and a limitation of the existing
formulation of model reconciliation as well.

Also note that balanced plans are indistinguishable from the
point of view of the human and are more useful to the robot
for trading of explanation and explicability costs. Hence, we
did not expand on further results on balanced plans so as not to
distract from the main focus of the paper which is to evaluate
explanations as model reconciliation. A more detailed account
of Figure 8 can be found in [8].

VII. DISCUSSIONS

As mentioned before, there were instances where partici-
pants in Study 1 generated explanations that are outside the
scope of any of the explanations discussed in Section III-B.
These are marked as “Other” in Figure 2d. In the following
we note three of these cases that we found interesting –

a) Post-hoc explanations: Notice that parts of an MCE
that actually contribute to the executability of a given plan
may not be explained in post-hoc situations where the robot
is explaining plans that have already been done as opposed
to plans that are being proposed for execution. The rationale
behind this is that if the human sees an action, that would
not have succeeded in his model, actually end up succeeding
(e.g. the robot had managed to go through a corridor that
was blocked by rubble) then he can rationalize that event
by updating his own model (e.g. there must not have been
a rubble there). This seems to be a viable approach to further

reduce size (c.f. selective property of explanations [20]) of
explanations in a post-hoc setting, and is out of scope of
explanations developed in [7].

b) Identification of Explicit Foils: Identification of ex-
plicit foils [7] can help reduce the size of explanations. In the
explanations introduced in Section III-B the foil was implicit –
i.e. why this plan as opposed to all other plans. However, when
the implicit foil can be estimated (e.g. top-K plans expected
by the human) then explanations may only include information
on why the plan in question is better than the other options
(which are either costlier or not executable). Some participants
provided explanations contrasting such foils in terms of (and
in addition to) the model differences.

c) Cost-based reasoning: Finally, a kind of explanation
that was attempted by some participants involved a cost
analysis of the current plan with respect to foils (in addition
to model differences, as mentioned above). Such explanations
have been studied extensively in previous planning literature
[16], [19] and seems to be still relevant for plan explanations
on top of the model reconciliation process.

VIII. CONCLUSION

The paper details the results of studies aimed to eval-
uate the effectiveness of plan explanations in the form of
model reconciliation. Through this study, we aimed to validate
whether explanations in the form of model reconciliation (in its
various forms) suffice to explain the optimality and correctness
of plans to the human in the loop. We also studied cases
where participants were asked to generate explanations in the
form of model changes, to see if explanations generated by
the humans align with any of the explanations identified in
existing literature. The results of the study (summarized in
Table I) seem to suggest that humans do indeed understand
explanations of this form and believe that such explanations
are necessary to explain plans. In future work, we would like
to investigate how explanations can be adapted for scenarios
where the robot is expected to interact with the humans over
a long period of time and how such interactions affect the
dynamics of trust and teamwork. Recent work on explanations
using model of self [42] can also provide interesting ways of
abstracting [43] model information.
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