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Plan recognition aims to discover target plans (i.e., sequences of actions) behind observed actions, with history
plan libraries or action models in hand. Previous approaches either discover plans by maximally “matching”
observed actions to plan libraries, assuming target plans are from plan libraries, or infer plans by executing
action models to best explain the observed actions, assuming that complete action models are available. In
real world applications, however, target plans are often not from plan libraries, and complete action models
are often not available, since building complete sets of plans and complete action models are often difficult
or expensive. In this paper we view plan libraries as corpora and learn vector representations of actions using
the corpora; we then discover target plans based on the vector representations. Specifically, we propose two
approaches, DUP and RNNPlanner, to discover target plans based on vector representations of actions. DUP
explores the EM-style (Expectation Maximization) framework to capture local contexts of actions and discover
target plans by optimizing the probability of target plans, while RNNPlanner aims to leverage long-short term
contexts of actions based on RNNs (recurrent neural networks) framework to help recognize target plans. In
the experiments, we empirically show that our approaches are capable of discovering underlying plans that
are not from plan libraries, without requiring action models provided. We demonstrate the effectiveness of our
approaches by comparing its performance to traditional plan recognition approaches in three planning domains.
We also compare DUP and RNNPlanner to see their advantages and disadvantages.
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1 INTRODUCTION
As computer-aided cooperative work scenarios become increasingly popular, human-in-the-loop
planning and decision support has become a critical planning challenge (c.f. [17, 18, 41]). An
important aspect of such a support [33] is recognizing what plans the human in the loop is making,
and provide appropriate suggestions about their next actions [2]. Additionally, discovering missing
actions executed in the past by other agents based on the “some” historical observations, would be
helpful for human to make better decisions to better cooperate with others.

Although there is a lot of work on plan recognition, much of it has traditionally depended on the
availability of complete action models [55, 74, 80]. As has been argued elsewhere [33], such models
are hard to get in human-in-the-loop planning scenarios. Here, the decision support systems have to
make themselves useful without insisting on complete action models of the domain. The situation
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here is akin to that faced by search engines and other tools for computer supported cooperate work,
and is thus a significant departure for the “planning as pure inference” mindset of the automated
planning community. As such, the problem calls for plan recognition with “shallow” models of the
domain (c.f. [31]), that can be easily learned automatically. Compared to learning action models
[65, 76, 78, 79] (“complex” models correspondingly) of the domain from limited training data,
learning shallow models can avoid the overfitting issue. Learning shallow models in this work is
different from previous HMM-based plan recognition approaches [11, 22] which were based on
observable signals. We aim to learn shallow models only based on a symbolic plan library. Our usage
of ”shallow models” follows the description given by [31] where they are defined as models that are
mostly useful for critiquing rather than creations of plans.

There has been very little work on learning such shallow models to support human-in-the-loop
planning. For example, the work on Woogle system [18] aimed to provide support to humans in web-
service composition. That work however relied on very primitive understanding of the actions (web
services in their case) that consisted merely of learning the input/output types of individual services.
Another work on IBM Scenario Planning Advisor [60] generates lists of candidate observations
corresponding to the detected risk drivers. That work however relied on aggregating relevant news
from the Web and social media. Other than supporting human-in-the-loop planning, work such as
[8] considers shallow models to be represented by deep latent space based on raw information such
as images describing states between actions. This is different from our plan recognition problem
which aims to build shallow models based on symbolic action sequences, without any state related
information available. In this paper, we focus on learning more informative models that can help
recognize the plans under construction by the humans, and provide active support by suggesting
relevant actions, without any information about states between actions.

Inspired by the effectiveness of distributed representations of words [43] in natural language, where
each word is represented by a vector and semantic relationships among words can be characterized
by their corresponding vectors, we found that actions can be viewed as words and plans can be seen
as sentences (and plan libraries can be viewed as corpora), suggesting actions can be represented
by vectors. As a result, similar to calculating probability of sentences based on vector represen-
tations of words, we can calculate the probability of underlying candidate plans based on vector
representations of actions. Based on the above-mentioned discovery, we propose two approaches
to learning informative models, namely DUP, standing for Discovering Underlying Plans based on
action-vector representations, and RNNPlanner, standing for Recurrent Neural Network based
Planner. The framework of DUP and RNNPlanner is shown in Fig. 1, where we take as input a
set of plans (or a plan library) and learn the distributed representations of actions (namely action
vectors). After that, our DUP approach exploits an EM-Style (Expectation Maximization) framework
to discover underlying plans based on the learnt action vectors, while our RNNPlanner approach
exploits an RNN-Style framework to generate plans to best explain observations (i.e., discover
underlying plans behind the observed actions) based on the learnt action vectors. In DUP we consider
local contexts (with a limited window size) of actions being recognized, while in RNNPlanner we
explore the potential influence from long and short-term actions, which can be modelled by RNN,
to help recognize unknown actions. In DUP, we calculate the post probability of an action given
its local context (preset by a specific window size) and thereafter the probability of a plan by the
product of all probabilities of actions in the plan. In other words, in the EM-style framework of DUP,
we consider local contexts of actions. On the other hand, RNNPlanner aims to remember actions
which are “far” from and have strong impacts on the target action. In other words, RNNPlanner is
able to capture long and short-term actions that “influence” the occurrence of the target action. In
this paper, we investigate the advantage and disadvantage of utilizing local contexts, i.e., DUP, and
long and short-term contexts, i.e., RNNPlanner, respectively.
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Fig. 1. The framework of our shallow models DUP and RNNPlanner

In summary, the contributions of the paper are shown below.
(1) In [62], we presented a version of DUP. In this paper we extend [62] with more details to

elaborate the approach.
(2) We propose a novel model RNNPlanner based on RNN to explore the influence of actions

from long and short-term contexts.
(3) We compare RNNPlanner to DUP to exhibit the advantages and disadvantages of leveraging

information from long and short-term contexts.
In the following sections, we first formulate our plan recognition problem, and then address the

details of our approaches DUP and RNNPlanner. After that, we empirically demonstrate that it
does capture a surprising amount of structure in the observed plan sequences, leading to effective plan
recognition. We further compare its performance to previous plan recognition techniques, including
the one that uses plan traces to learn the STRIPS-style action models, and uses the learned model
to support plan recognition. We also compare RNNPlanner with DUP to see the advantage and
disadvantage of leveraging long and short-term contexts of actions in different scenarios. We finally
review previous approaches related to our work and conclude our paper with further work.

2 PROBLEM FORMULATION
A plan library, denoted by ℒ, is composed of a set of plans {𝑝}, where 𝑝 is a sequence of actions, i.e.,
𝑝 = ⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ where 𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑛, is an action name (without any parameter) represented
by a string. For example, a string unstack-A-B is an action meaning that a robot unstacks block
A from block B. We denote the set of all possible actions by 𝒜 which is assumed to be known
beforehand. For ease of presentation, we assume that there is an empty action, 𝜑, indicating an
unknown or not observed action, i.e., 𝒜 = 𝒜∪{𝜑}. An observation of an unknown plan 𝑝 is denoted
by 𝒪 = ⟨𝑜1, 𝑜2, . . . , 𝑜𝑀 ⟩, where 𝑜𝑖 ∈ 𝒜, 1 ≤ 𝑖 ≤ 𝑀 , is either an action in 𝒜 or an empty action
𝜑 indicating the corresponding action is missing or not observed. Note that 𝑝 is not necessarily in
the plan library ℒ, which makes the plan recognition problem more challenging, since matching the
observation to the plan library will not work any more.

We assume that the human is making a plan of at most length 𝑀 . We also assume that at any given
point, the planner is able to observe 𝑀 − 𝑘 of these actions. The 𝑘 unobserved actions might either
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be in the suffiix of the plan, or in the middle. Our aim is to suggest, for each of the 𝑘 unobserved
actions, 𝑙 possible choices from which the user can select the action. (Note that we would like to
keep 𝑙 small, ideally close to 1, so as not to overwhelm users). Accordingly, we will evaluate the
effectiveness of the decision support in terms of whether or not the user’s best/intended action is
within the suggested 𝑙 actions.

Specifically, our recognition problem can be represented by a triple ℜ = (ℒ,𝒪,𝒜). The solution
to ℜ is to discover the unknown plan 𝑝, which is a plan with unknown observations, that best explains
𝒪 given ℒ and 𝒜. We have the following assumptions A1-A3:

A1: The length of the underlying plan to be discovered is known, which releases us from searching
unlimited length of plans.

A2: The positions of missing actions in the underlying plan is known in advance, which releases us
from searching missing actions in between observed actions.

A3: All actions observed are assumed to be correct, which indicates there is no need to criticize or
rectify the observed actions.

Note that assumptions A1 and A2 can be removed by leveraging auxiliary knowledge, such as
domain models, as done by previous approaches [20, 55, 61]. Building such auxiliary knowledge
often requires a lot of human efforts, we thus assume we do not have that knowledge by considering
assumptions A1 and A2.

An example of our plan recognition problem in the blocks1 domain is shown below.
Example: A plan library ℒ in the blocks domain is assumed to have four plans as shown below:

plan 1: pick-up-B stack-B-A pick-up-D stack-D-C
plan 2: unstack-B-A put-down-B unstack-D-C put-down-D
plan 3: pick-up-B stack-B-A pick-up-C stack-C-B pick-up-D stack-D-C
plan 4: unstack-D-C put-down-D unstack-C-B put-down-C unstack-B-A put-down-B

An observation 𝒪 of action sequence is shown below:
observation: pick-up-B 𝜑 unstack-D-C put-down-D 𝜑 stack-C-B 𝜑 𝜑

Given the above input, our DUP algorithm outputs plans as follows:
pick-up-B stack-B-A unstack-D-C put-down-D pick-up-C stack-C-B pick-up-D stack-
D-C

Although the “plan completion” problem seems to differ superficially from the traditional “plan
recognition” problem, we point out that many earlier works on plan recognition do in fact evaluate
their recognition algorithms in terms of completion tasks, e.g., [55, 75, 80]. While these earlier
efforts use different problem settings, taking either a plan library or action models as input, they
share one common characteristic: they all aim to look for a plan that can best explain (or complete)
the observed actions. This is the same as our problem we aim to solve.

3 LEARNING THE DISTRIBUTED REPRESENTATIONS OF ACTIONS
To discover the unobserved actions, we aim to estimate the probability of candidate actions that
can be the unobserved actions. To do this, inspired by distributed representations of words [43], we
aim to learn the distributed representations of actions and exploit the representations to compute the
probability of candidate actions (together with observed actions). Since actions are denoted by a
name string, actions can be viewed as words, and a plan can be viewed as a sentence. Furthermore,
the plan library ℒ can be seen as a corpus, and the set of all possible actions 𝒜 is the vocabulary.
Given a plan corpus, we exploited the off-the-shelf software, word2vec [43], for learning vector
representations for actions.
1http://www.cs.toronto.edu/aips2000/
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The objective of the Skip-gram model is to learn vector representations for predicting the surround-
ing words in a sentence or document. Given a corpus 𝒞, composed of a sequence of training words
⟨𝑤1, 𝑤2, . . . , 𝑤𝑇 ⟩, where 𝑇 = |𝒞|, the Skip-gram model maximizes the average log probability

1

𝑇

𝑇∑︁
𝑡=1

∑︁
−𝑐≤𝑗≤𝑐,𝑗 ̸=0

log 𝑝(𝑤𝑡+𝑗 |𝑤𝑡) (1)

where 𝑐 is the size of the training window or context. Note that “empty” words are added at the
beginning of the word sequence when 𝑡+ 𝑗 is less than 1, and in the end of the word sequence when
𝑡+ 𝑗 is larger than 𝑇 .

The basic probability 𝑝(𝑤𝑡+𝑗 |𝑤𝑡) is defined by the hierarchical softmax, which uses a binary
tree representation of the output layer with the 𝐾 words as its leaves and for each node, explicitly
represents the relative probabilities of its child nodes [43, 45]. Each word 𝑣 must be represented by
a bit vector (𝑏1(𝑣), . . . , 𝑏𝑚(𝑣)). This can be achieved by building a binary hierarchical clustering
of words. For example, 𝑏1(𝑣) = 1 indicates that 𝑣 belongs to the top-level group 1 and 𝑏2(𝑣) = 0
indicates that it be- longs to the sub-group 0 of that top-level group. The next-word conditional
probability can thus be represented and computed by:

𝑃 (𝑣|𝑤𝑡−1, . . . , 𝑤𝑡−𝑛+1) =

𝑚∏︁
𝑗=1

𝑃 (𝑏𝑗(𝑣)|𝑏1(𝑣), . . . , 𝑏𝑗−1(𝑣), 𝑤𝑡−1, . . . , 𝑤𝑡−𝑛+1).

This can be interpreted as a series of binary stochastic decisions associated with nodes of a binary tree.
Each node is indexed by a bit vector corresponding to the path from the root to the node (append 1 or
0 according to whether the left or right branch of a decision node is followed). Each leaf corresponds
to a word. For each leaf node, there is a unique path from the root to the node, and this path is used to
estimate the probability of the word represented by the leaf node. There are no explicit output vector
representations for words. Instead, each inner node has an output vector 𝑣′𝑛(𝑤,𝑗), and the probability
of a word being the output word is defined by

𝑝(𝑤𝑡+𝑗 |𝑤𝑡) =

𝐿(𝑤𝑡+𝑗)−1∏︁
𝑖=1

{︁
𝜎
(︁
I
[︀
𝑛(𝑤𝑡+𝑗 , 𝑖+ 1) = 𝑐ℎ𝑖𝑙𝑑(𝑛(𝑤𝑡+𝑗 , 𝑖))

]︀
· 𝑣𝑛(𝑤𝑡+𝑗 ,𝑖) · 𝑣𝑤𝑡

)︁}︁
, (2)

where
𝜎(𝑥) = 1/(1 + exp(−𝑥)).

𝐿(𝑤) is the length from the root to the word 𝑤 in the binary tree, e.g., 𝐿(𝑤) = 4 if there are four
nodes from the root to 𝑤. 𝑛(𝑤, 𝑖) is the 𝑖th node from the root to 𝑤, e.g., 𝑛(𝑤, 1) = 𝑟𝑜𝑜𝑡 and
𝑛(𝑤,𝐿(𝑤)) = 𝑤. 𝑐ℎ𝑖𝑙𝑑(𝑛) is a fixed child (e.g., left child) of node 𝑛. 𝑣𝑛 is the vector representation
of the inner node 𝑛. 𝑣𝑤𝑡

is the input vector representation of word 𝑤𝑡. The identity function I[𝑥] is 1
if 𝑥 is true; otherwise it is -1.

We can thus build vector representations of actions by maximizing Equation (1) with corpora or
plan libraries ℒ as input. We will exploit the vector representations to discover the unknown plan 𝑝
in the next subsection.

4 OUR DUP ALGORITHM
Our DUP approach to the recognition problem ℜ functions by two phases. We first learn vector
representations of actions using the plan library ℒ. We then iteratively sample actions for unobserved
actions 𝑜𝑖 by maximizing the probability of the unknown plan 𝑝 via the EM framework. We present
DUP in detail in the following subsections.
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4.1 Maximizing Probability of Unknown Plans
With the vector representations learnt in the last subsection, a straightforward way to discover the
unknown plan 𝑝 is to explore all possible actions in 𝒜 such that 𝑝 has the highest probability, which
can be defined similar to Equation (1), i.e.,

ℱ(𝑝) =

𝑀∑︁
𝑘=1

∑︁
−𝑐≤𝑗≤𝑐,𝑗 ̸=0

log 𝑝(𝑤𝑘+𝑗 |𝑤𝑘) (3)

where 𝑤𝑘 denotes the 𝑘th action of 𝑝 and 𝑀 is the length of 𝑝. As we can see, this approach is
exponentially hard with respect to the size of 𝒜 and number of unobserved actions. We thus design
an approximate approach in the Expectation-Maximization framework to estimate an unknown plan
𝑝 that best explains the observation 𝒪.

To do this, we introduce new parameters to capture “weights” of values for each unobserved action.
Specifically speaking, assuming there are 𝑋 unobserved actions in 𝒪, i.e., the number of 𝜑s in 𝒪 is
𝑋 , we denote these unobserved actions by �̄�1, ..., �̄�𝑥, ..., �̄�𝑋 , where the indices indicate the order
they appear in 𝒪. Note that each �̄�𝑥 can be any action in 𝒜. We associate each possible value of �̄�𝑥
with a weight, denoted by Γ̄�̄�𝑥,𝑥. Γ̄ is a |𝒜| ×𝑋 matrix, satisfying∑︁

𝑜∈𝒜

Γ̄𝑜,𝑥 = 1,

where Γ̄𝑜,𝑥 ≥ 0 for each 𝑥. For the ease of specification, we extend Γ̄ to a bigger matrix with a size
of |𝒜| ×𝑀 , denoted by Γ, such that Γ𝑜,𝑦 = Γ̄𝑜,𝑥 if 𝑦 is the index of the 𝑥th unobserved action in 𝒪,
for all 𝑜 ∈ 𝒜; otherwise, Γ𝑜,𝑦 = 1 and Γ𝑜′,𝑦 = 0 for all 𝑜′ ∈ 𝒜∧ 𝑜′ ̸= 𝑜. Our intuition is to estimate
the unknown plan 𝑝 by selecting actions with the highest weights. We thus introduce the weights to
Equation (2), as shown below,

𝑝(𝑤𝑘+𝑗 |𝑤𝑘) =

𝐿(𝑤𝑘+𝑗)−1∏︁
𝑖=1

{︁
𝜎(I(𝑛(𝑤𝑘+𝑗 , 𝑖+ 1) =

𝑐ℎ𝑖𝑙𝑑(𝑛(𝑤𝑘+𝑗 , 𝑖))) · 𝑎𝑣𝑛(𝑤𝑘+𝑗 ,𝑖) · 𝑏𝑣𝑤𝑘
)
}︁
, (4)

where 𝑎 = Γ𝑤𝑘+𝑗 ,𝑘+𝑗 and 𝑏 = Γ𝑤𝑘,𝑘. We can see that the impact of 𝑤𝑘+𝑗 and 𝑤𝑘 is penalized by
weights 𝑎 and 𝑏 if they are unobserved actions, and stays unchanged, otherwise (since both 𝑎 and 𝑏
equal to 1 if they are observed actions).

We assume 𝑋 ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(Γ·,𝑥), i.e., 𝑝(𝑋 = 𝑜) = Γ𝑜,𝑥, where Γ𝑜,𝑥 ≥ 0 and
∑︀

𝑎∈𝒜 𝜂𝑎 = 1.
𝑃 (𝑝|Γ) =

∏︀
𝑥 Γ𝑜,𝑥

We redefine the objective function as shown below,

ℱ(𝑝,Γ) =

𝑀∑︁
𝑘=1

∑︁
−𝑐≤𝑗≤𝑐,𝑗 ̸=0

log 𝑝(𝑤𝑘+𝑗 |𝑤𝑘), (5)

where 𝑝(𝑤𝑘+𝑗 |𝑤𝑘) is defined by Equation (4). The gradient of Equation 5 is shown below,

𝜕ℱ
𝜕Γ𝑜,𝑥

=
4𝑐(𝐿(𝑜)− 1)

Γ𝑜,𝑥
. (6)

The only parameters needed to be updated are Γ, which can be easily done by gradient descent, as
shown below,

Γ𝑜,𝑥 = Γ𝑜,𝑥 + 𝛿
𝜕ℱ
𝜕Γ𝑜,𝑥

, (7)
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if 𝑥 is the index of unobserved action in 𝒪; otherwise, Γ𝑜,𝑥 stays unchanged, i.e., Γ𝑜,𝑥 = 1. Note
that 𝛿 is a learning constant.

With Equation (7), we can design an EM algorithm by repeatedly sampling an unknown plan
according to Γ and updating Γ based on Equation (7) until reaching convergence (e.g., a constant
number of repetitions is reached).

4.2 Overview of our DUP approach
An overview of our DUP algorithm is shown in Algorithm 1. In Step 2 of Algorithm 1, we initialize
Γ𝑜,𝑘 = 1/𝑀 for all 𝑜 ∈ 𝒜, if 𝑘 is an index of unobserved actions in 𝒪; and otherwise, Γ𝑜,𝑘 = 1 and
Γ𝑜′,𝑘 = 0 for all 𝑜′ ∈ 𝒜 ∧ 𝑜′ ̸= 𝑜. In Step 4, we view Γ·,𝑘 as a probability distribution, and sample
an action from 𝒜 based on Γ·,𝑘 if 𝑘 is an unobserved action index in 𝒪. In Step 5, we only update
Γ·,𝑘 where 𝑘 is an unobserved action index. In Step 6, we linearly project all elements of the updated
Γ to between 0 and 1, such that we can do sampling directly based on Γ in Step 4. In Step 8, we
simply select �̄�𝑥 based on

�̄�𝑥 = argmax
𝑜∈𝒜

Γ𝑜,𝑥,

for all unobserved action index 𝑥.

Algorithm 1: Framework of our DUP algorithm
Input: plan library ℒ, an observation 𝒪
Output: plan 𝑝

1: learn vector representation of actions based on ℒ
2: initialize Γ𝑜,𝑘 with 1/𝑀 for each 𝑜 ∈ 𝒜 and each 𝑘 that is an unobserved action index
3: while the maximal number of repetitions Λ is not reached do
4: sample unobserved actions in 𝒪 based on Γ
5: for each unobserved action 𝑥, update Γ·,𝑥 based on Equation (7)
6: project Γ to [0,1]
7: end while
8: select actions for unobserved actions with the largest weights in Γ
9: return 𝑝

Our DUP algorithm framework belongs to a family of policy gradient algorithms, which have
been successfully applied to complex problems, e.g., robot control [46], natural language processing
[10]. Our formulation is unique in how it recognizes plans, in comparison to the existing methods
in the planning community. The first step of Algorithm 1 is 𝑂(𝐼𝑡𝑒𝑟𝑠× 𝑇𝑚𝑎𝑥 × |ℒ| ×𝑊𝑖𝑛𝑆𝑖𝑧𝑒),
where 𝐼𝑡𝑒𝑟𝑠 is the maximal number of iterations for vector representations of actions, and 𝑇𝑚𝑎𝑥 is
the maximal length of plans in ℒ and |ℒ| is the number of plans in ℒ, and 𝑊𝑖𝑛𝑆𝑖𝑧𝑒 is the size of
the window (𝑊𝑖𝑛𝑆𝑖𝑧𝑒 = 2𝑐 + 1). The time cost of Step 2 is 𝑂(|𝒜| × 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝒪)), and the
time cost of Steps 2 to 7 is 𝑂(Λ× |𝒜| × 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝒪)), where 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝒪) is the number of
unobserved actions in 𝒪. In general, the time cost of the first step is much higher than other steps,
i.e., the time cost of Algorithm 1 is 𝑂(𝐼𝑡𝑒𝑟𝑠× 𝑇𝑚𝑎𝑥 × |ℒ| ×𝑊𝑖𝑛𝑆𝑖𝑧𝑒).

5 OUR RNNPLANNER APPROACH
In the EM-style framework, we aim to randomly sample actions of unobserved actions and then
estimate the probability of them together with observed actions. This framework is capable of
capturing local context of unobserved actions well (i.e, posteriori probability of unobserved actions
is conditionally dependent on preceding and succeeding actions with a window). In this section, we
also would like to study the utility of long-term context for predicting unobserved actions based on
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observed actions and plan library. To do this, we explore a well-known model, Recurrent Neural
Networks (RNNs), specifically Long Short-term Memory networks (LSTMs), which have been
demonstrated effective on predicting future signals [49] by remembering long-term information. We
will first introduce the RNN architecture, and then introduce our RNNPlanner model.

5.1 The RNN Model
We consider a specific type of RNNs, which generates an output sequence with the same length of an
input sequence. Note that in natural language processing (NLP) community, various RNN models,
such as deep RNNs [49], Bi-LSTM-CRF [4], etc., were designed to suit different complicated NLP
tasks. The more complex the model is, the more data are required to build the model. Compared
to NLP tasks, our plan recognition task is relatively not that complicated (plans in the plan library
are formally represented by action sequences, while natural language data in NLP tasks are often
unstructured and ambiguous). In addition, our data is relatively smaller than that used in many
RNN models in complicated NLP tasks. To avoid overfitting, we chose a basic RNN model (with a
relatively small number of parameters). Given an input sequence x, an RNN model could predict
an output sequence y, in which output 𝑦𝑡 at each step depends on the input 𝑥𝑡 at that step, and the
hidden state at the previous step. If we unroll this RNN cell along 𝑇 steps, it could accept an input
sequence x = (𝑥1..., 𝑥𝑇 ), and compute a sequence of hidden states h = (ℎ1, ℎ2, ..., ℎ𝑇 ), as shown
in Fig. 2. For each of these hidden states ℎ𝑡 (1 ≤ 𝑡 ≤ 𝑇 ), it contributes to predicting the next step
output 𝑦𝑡+1, and thus RNN computes an output vector sequence y = (𝑦1, ..., 𝑦𝑇 ), by iterating the
following equations from 𝑡 = 1 to 𝑇 :

ht-1 

xt-1 xt xt+1 

ht ht+1 

yt+1 yt yt-1 

Fig. 2. The framework of Recurrent Neural Networks

ℎ𝑡 = ℋ(𝑊𝑥ℎ𝑥𝑡 +𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (8)
𝑦𝑡 = 𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦 (9)

where the 𝑊 terms denote weight matrices, i.e., 𝑊𝑥ℎ is the input-hidden weight matrix, 𝑊ℎℎ is the
hidden-hidden weight matrix, and 𝑊ℎ𝑦 is the hidden-output matrix. The 𝑏 terms denote bias vectors,
i.e., 𝑏ℎ is hidden bias vector, and 𝑏𝑦 is the output bias vector. ℋ is the hidden layer function, which is
usually an elementwise application of a sigmoid function. The RNN could also be utilized to directly
generate, in principle, infinitely long future outputs, given a single input 𝑥𝑡. The sequence of future
outputs could be generated by directly feeding the output 𝑦𝑡 at a step 𝑡, to the input 𝑥𝑡+1 at the next
step 𝑡+ 1, by assuming what it predicts is reliable (i.e., 𝑦𝑡 = 𝑥𝑡+1). As for training the RNN as a
sequence generation model, we could utilize 𝑦𝑡 to parameterize a predictive distribution 𝑃 (𝑥𝑡+1|𝑦𝑡)
over all of the possible next inputs 𝑥𝑡+1, by minimizing the loss:

ℒ(x) = −
𝑇∑︁

𝑡=1

𝑙𝑜𝑔𝑃 (𝑥𝑡+1|𝑦𝑡). (10)
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where 𝑇 is the number of steps of an observed plan trace, 𝑥𝑡+1 is the observed action at step 𝑡+ 1,
and 𝑦𝑡 is the output at step 𝑡 as well as the prediction of what would happen at step 𝑡+1. To estimate
𝑦𝑡 based on 𝑥1, . . . , 𝑥𝑡, we exploit the Long Short-term Memory (LSTM) model [24, 58], which has
been demonstrated effective on generating sequences, to leverage long term information prior to 𝑥𝑡

and predict 𝑦𝑡 based on current input 𝑥𝑡. We can thus rewrite Equation (10) as:

ℒ(x; 𝜃) = −
𝑇∑︁

𝑡=1

𝑙𝑜𝑔𝑃 (𝑥𝑡+1|𝑦𝑡)LSTM(𝑦𝑡|𝑥1:𝑡; 𝜃), (11)

where LSTM(𝑦𝑡|𝑥1:𝑡; 𝜃) indicates the LSTM model estimates 𝑦𝑡 based on current input 𝑥𝑡 and
memories of previous input prior to 𝑥𝑡. 𝜃 are parameters including 𝑊𝑥ℎ, 𝑊ℎℎ, 𝑊ℎ𝑦 , 𝑏ℎ, and 𝑏𝑦 .

The framework of LSTM [24, 58] is shown in Fig. 3, where 𝑥𝑡 is the 𝑡th input, ℎ𝑡 is the 𝑡th hidden
state. 𝑖𝑡, 𝑓𝑡, 𝑜𝑡 and 𝑐𝑡 are the 𝑡th input gate, forget gate, output gate, cell and cell input activation
vectors, respectively, whose dimensions are the same as the hidden vector ℎ𝑡. LSTM is implemented

Fig. 3. The framework of the Long Short-term Memory (LSTM) cell

by the following functions:

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 +𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) (12)
𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 +𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓 ) (13)
𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ tanh(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (14)
𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 +𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) (15)
ℎ𝑡 = 𝑜𝑡 ∘ tanh(𝑐𝑡) (16)

where ∘ indicates the Hadamard product, 𝜎 is the logistic sigmoid function, 𝑊𝑥𝑖 is an input-input gate
matrix, 𝑊ℎ𝑖 is a hidden-input gate matrix, 𝑊𝑐𝑖 is a cell-input gate matrix, 𝑊𝑥𝑓 is an input-forget gate
matrix, 𝑊ℎ𝑓 is a hidden-forget gate matrix, 𝑊𝑐𝑓 is a cell-forget gate matrix, 𝑊𝑥𝑐 is an input-cell gate
matrix, 𝑊ℎ𝑐 is a hidden-cell gate matrix, 𝑊𝑥𝑜 is an input-output gate matrix, 𝑊ℎ𝑜 is a hidden-output
gate matrix, 𝑊𝑐𝑜 is a cell-output gate matrix. 𝑏𝑖, 𝑏𝑓 , 𝑏𝑐, and 𝑏𝑜 are bias terms. Note that the matrices
from cell to gate vectors (i.e., 𝑊𝑐𝑖, 𝑊𝑐𝑓 and 𝑊𝑐𝑜) are diagonal, such that each element 𝑒 in each
gate vector only receives input of element 𝑒 of the cell vector. The major innovation of LSTM is
its memory cell 𝑐𝑡 which essentially acts as an accumulator of the state information. 𝑐𝑡 is accessed,
written and cleared by self-parameterized controlling gates, i.e., input, forget, output gates. Each
time a new input 𝑥𝑡 comes, its information is accumulated to the memory cell if the input gate 𝑖𝑡 is
activated. The past cell status 𝑐𝑡−1 could be forgotten in this process if the forget gate 𝑓𝑡 is activated.
Whether the latest cell output 𝑐𝑡 is propagated to the final state ℎ𝑡 is further controlled by the output
gate 𝑜𝑡. The benefit of using the memory cell and gates to control information flow is the gradient is
trapped in the cell and prevented from vanishing too quickly.
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5.2 Discovering Underlying Plans with the RNN Model
With the distributed representations of actions addressed in Section 3, we view each plan in the
plan library as a sequence of actions, and the plan library as a set of action sequences, which can
be utilized to train the RNN model. The framework of RNN with sequences of actions can be
seen from Fig. 4, which is similar to [25]. The bottom row in Fig. 4 is an input action sequence
“pick-up-B, stack-B-A, pick-up-C, stack-C-B, pick-up-D”. The “Embedding Layer” computes vector
representations of actions, which is pretrained by Section 3. Similar to a classic RNN cell, the LSTM
cell feeds its output to both itself as a hidden state, and the softmax layer to obtain a probability
distribution over all actions in the action vocabulary 𝒜. From the perspective of the LSTM cell at
the next step, it receives a hidden state from the previous step ℎ𝑡−1, an action vector at the current
step 𝑥𝑡. To obtain the index of most probable action, our model samples over the action distribution
output from softmax layer. That retrieved index could be mapped to an action in the vocabulary 𝒜.

LSTM

stack-B-A

OUT1

pick-up-B

Embedding 

Layer

pick-up-C stack-C-B pick-up-D

Softmax 

Layer

LSTM

OUT2

Embedding 

Layer

Softmax 

Layer

LSTM

OUT3

Embedding 

Layer

Softmax 

Layer

LSTM

OUT4

Embedding 

Layer

Softmax 

Layer

LSTM

OUT5

Embedding 

Layer

Softmax 

Layer

Sampling

Fig. 4. The framework of our RNNPlanner approach

The top row in Fig. 4 is the output sequence, denoted by “OUT1, OUT2, OUT3, OUT4, OUT5,
...”, which corresponds to the estimated sequence “𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, . . .” in Equation (17). Note that
we exploit the dotted arrow to indicate two folds of meanings in Fig. 4. When training the RNN
model, the one pointed by the head of the dotted arrow (the embedding of the input) is used to
compute the cross entropy with the output at tail (output of LSTM cell at the previous step), and
next-step observation as the input at the head, to train the model. When using the trained RNN model
to discover unknown actions, the model assumes what it predicts is the real next input, and takes
it to continue its prediction. Thus the one pointed by the head is copied and identical to the one
denoted by the tail. For example, the embedding of “stack-B-A” is copied from the prediction vector
of “OUT1” if the input “stack-B-A” was unknown. In addition, the arrows between each of two
LSTM cells shows the unrolling of a LSTM cell. The horizontal dashed line suggests that we obtain
the action output at each step, by sampling from probability distribution, provided by the softmax
layer. With the trained RNN model, we can discover underlying actions by simply exploiting the
RNN model to generate unknown actions based on observed or already discovered actions.

An overview of our RNNPlanner algorithm can be seen from Algorithm 2. In Algorithm 2, Step
1 is the same as Step 1 of Algorithm 1. In Step 2, we let 𝑦𝑡 = 𝑥𝑡+1, such that, given 𝑝(𝑥𝑡+1|𝑦𝑡) = 1,
Equation (17) can be calculated by

ℒ(x; 𝜃) = −
𝑇∑︁

𝑡=1

𝑙𝑜𝑔LSTM(𝑥𝑡+1|𝑥1:𝑡; 𝜃), (17)
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where x is a plan in ℒ. We use MLE (Maximal Likelihood Estimation) to estimate parameters 𝜃
given 𝑥1:𝑡 as input and 𝑥𝑡+1 as output for each 𝑡 ∈ [1, |x|), where x is a plan from ℒ.

Algorithm 2: Framework of our RNNPlanner algorithm
Input: plan library ℒ, observed actions 𝒪
Output: plan 𝑝

1: learn vector representation of actions based on ℒ
2: initialize 𝜃 with random values
3: while the maximal number of repetitions Λ is not reached do
4: for each plan 𝑝 ∈ ℒ do
5: update parameters 𝜃 by optimizing the objective ℒ(x; 𝜃) based on the vector representations of 𝑝
6: end for
7: end while
8: let 𝑝 = 𝑁𝑈𝐿𝐿
9: for each 𝑡 = 1 to |𝒪| do

10: if 𝑜𝑡 ∈ 𝒪 is 𝜑 then
11: generate 𝑦𝑡 based on 𝐿𝑆𝑇𝑀(𝑦𝑡|𝑝; 𝜃)
12: 𝑜𝑡 = 𝑦𝑡
13: end if
14: 𝑝 = [𝑝|𝑜𝑡]
15: end for
16: return 𝑝

For example, given the observation:

pick-up-B 𝜑 unstack-D-C put-down-D 𝜑 stack-C-B 𝜑 𝜑

we can generate the first 𝜑 based on pick-up-B, the second 𝜑 based on actions from pick-up-B to
put-down-D, the third 𝜑 based on all previous actions (including the generated actions for 𝜑s).

The running time complexity of Step 1 in Algorithm 2 is the same as addressed in the Algorithm
1, i.e., 𝑂(𝐼𝑡𝑒𝑟𝑠 × 𝑇𝑚𝑎𝑥 × |ℒ| × 𝑊𝑖𝑛𝑆𝑖𝑧𝑒). The time cost of Steps 2 to 7 of Algorithm 2 is
𝑂(Λ × |ℒ| × 𝑇 2

𝑚𝑎𝑥), where 𝑇 2
𝑚𝑎𝑥 is the time cost of updating 𝜃 (Step 5) based on plan 𝑝 since it

needs to scan each action 𝑎 in 𝑝 and 𝑎’s preceding actions when computing the objective ℒ(x; 𝜃) as
shown in Equation 17. The time cost of Steps 8 to 15 is 𝑂(|𝒪|2) based on the parameters 𝜃 learnt
by previous steps. In summary, the complexity of Algorithm 2 is 𝑂(Λ× |ℒ| × 𝑇 2

𝑚𝑎𝑥), considering
𝑇𝑚𝑎𝑥 is much larger than 𝑊𝑖𝑛𝑆𝑖𝑧𝑒, and the length of 𝒪 is general much less than |ℒ| × 𝑇 2

𝑚𝑎𝑥.

6 EXPERIMENTS
In this section, we evaluate our DUP and RNNPlanner algorithms in three planning domains from
International Planning Competition, i.e., blocks1, depots2, and driverlog2, which are described as
follows [74]:

∙ Blocks: The objects in the domain include a finite number of cubical blocks, and a table large
enough to hold all of them. Each block is on a single other object (either another block or the
table). For each block, either it is clear or else there is a unique block a sitting on it. There is
one kind of action: move a single clear block, either from another block onto the table, or from
an object onto another clear block. As a result of moving block b from c onto d, b is sitting on
d instead of c, c is clear (unless it is the table), and d is not clear (unless it is the table) [26].

2http://ipc02.icaps-conference.org/CompoDomains/IPC3.tgz
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∙ Depots: The domain consists of actions to load and unload trucks, using hoists that are available
at fixed locations. The loads are all crates that can be stacked and unstacked onto a fixed set of
pallets at the locations. The trucks do not hold crates in a particular order, so they can act like
a table in the Blocks domain, allowing crates to be reordered.

∙ Driverlog: This domain has drivers that can walk between locations and trucks that can drive
between locations. Walking requires traversal of different paths from those used for driving,
and there is always one intermediate location on a footpath between two road junctions. The
trucks can be loaded or unloaded with packages (with or without a driver present) and the
objective is to transport packages between locations, ending up with a subset of the packages,
the trucks and the drivers at specified destinations.

To generate training and testing data, we randomly created 5000 planning problems for each domain,
and solved these planning problems with a planning solver (we used FF3 in the experiment), to
produce 5000 plans.

We define the accuracy of our DUP and RNNPlanner algorithms as follows. For each unobserved
action �̄�𝑥, DUP and RNNPlanner suggest a set of possible actions 𝑆𝑥 which have the highest value
of Γ�̄�𝑥,𝑥 for all �̄�𝑥 ∈ 𝒜. If 𝑆𝑥 covers the truth action 𝑎𝑡𝑟𝑢𝑡ℎ, i.e., 𝑎𝑡𝑟𝑢𝑡ℎ ∈ 𝑆𝑥, we increase the
number of correct suggestions by 1. We thus define the accuracy 𝑎𝑐𝑐 as shown below:

𝑎𝑐𝑐 =
1

𝑇

𝑇∑︁
𝑖=1

#⟨𝑐𝑜𝑟𝑟𝑒𝑐𝑡-𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠⟩𝑖
𝐾𝑖

,

where 𝑇 is the size of testing set, #⟨𝑐𝑜𝑟𝑟𝑒𝑐𝑡-𝑠𝑢𝑔𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑠⟩𝑖 is the number of correct suggestions
for the 𝑖th testing plan, 𝐾𝑖 is the number of unobserved actions in the 𝑖th testing plan. We can see
that the accuracy 𝑎𝑐𝑐 may be influenced by 𝑆𝑥. We will test different size of 𝑆𝑥 in the experiment.
Note that we borrow the name of “accuracy” with a different definition from data mining community,
where accuracy is defined by the ratio of True Positive and True Negative over all testing data. In our
definition of accuracy, we view all actions in the recommended set are equally important and do not
take their corresponding values into account once they are recommended.

Table 1. Features of the three domains: blocks, depots, and driverlog

domain #plan #word avg-of-length #vocabulary
blocks 5000 292250 58 1250
depots 5000 209711 42 2273
driverlog 5000 179621 36 1441

We randomly divided the plans into ten folds, with 500 plans in each fold. We ran our DUP
algorithm ten times to calculate an average of accuracies, each time with one fold for testing and the
rest for training. In the testing data, we randomly removed actions from each testing plan (i.e., 𝒪)
with a specific percentage 𝜉 of the plan length. Features of datasets are shown in Table 1, where the
second column denoted by “#plan” is the number of plans generated, the third column denoted by
“#word” is the total number of words (or actions) of all plans, the fourth column denoted by “avg-of-
length” is an average of length over all of the plans, and the last column denoted by “#vocabulary”
is the size of vocabulary used in all plans. In the experiment, we evaluated our approaches on their
performances with respect to the three datasets whose vocabulary sizes are different from each other.

We set the learning constant 𝛿 to be 0.1 and the maximal number of iterations to be 1500 in DUP.
In RNNPlanner, we set the size of the LSTM hidden layer to be 800, training epoch number to be
3https://fai.cs.uni-saarland.de/hoffmann/ff.html
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250, learning rate to be 0.002, decay rate to be 0.97, and batch size to be 50. For detailed settings
of DUP4 and RNNPlanner5 can be found from the online websites, where the source codes and
datasets are available. We compared our approaches to baselines as shown below.

∙ MatchPlan: State-of-the-art plan recognition approaches with plan libraries as input aim at
finding a plan from plan libraries to best explain the observed actions [9, 23], which we denote
by MatchPlan. We develop a MatchPlan system based on the high-level idea shared by
[9, 23], aiming at recognizing plans from “flat” plan libraries (i.e., the plans in the libraries
are total-order action sequences), as DUP is designed for, and compare our DUP algorithm to
MatchPlan with respect to different percentages of unobserved actions 𝜉 and different sizes
of suggestion or recommendation set 𝑆𝑥.

∙ ARMS+PRP: Another baseline is action-models based plan recognition approach [55] (denoted
by PRP, short for Plan Recognition as Planning). Since we do not have action models as input
in our DUP algorithm, we exploited the action model learning system ARMS [65] to learn
action models from the plan library and feed the action models to the PRP approach. We call
this hybrid plan recognition approach ARMS+PRP. To learn action models, ARMS requires
state information of plans as input. We thus added extra information, i.e., initial state and
goal of each plan in the plan library, to ARMS+PRP. To the best of our knowledge, there is
no off-the-shelf approach doing this. We thus built this hybrid system based on off-the-shelf
action model learning approach ARMS and plan-recognition-as-planning approach PRP to be
compared with. We believe replacing PRP with other approaches will not change the accuracy
since the accuracy depends on the learnt “complex” (incomplete) action models that influence
the plan recognition quality essentially. We set to be 0.5 the probability threshold of the
frequent set mining algorithm in ARMS when using ARMS to learn action models, which has
been demonstrated effective by [65]. In addition, PRP requires as input a set of candidate goals
𝒢 for each plan to be recognized in the testing set, which was also generated and fed to PRP
when testing. In summary, the hybrid plan recognition approach ARMS+PRP has more input
information, i.e., initial states and goals in plan library and candidate goals 𝒢 for each testing
example, than our DUP approach.

In the following subsections, we aim to evaluate our approaches DUP and RNNPlanner in the
following aspects.

∙ We first compared DUP to ARMS+PRP to illustrate that the shallow model learnt by DUP can
indeed outperform the “exact” model learnt by ARMS+PRP.

∙ We then compared DUP to MatchPlan to show that the shallow model learnt by DUP
performs better than directly searching methods as done by MatchPlan.

∙ After that we compared DUP and RNNPlanner to analyze the advantages and disadvantages
of the two shallow-model learning approaches.

∙ Finally, we compared our proposed DUP and RNNPlanner approaches to SPR, a state-of-
the-art approach, to exhibit the effectiveness of our approaches on generalizing to recognize
plans which are not from the plan library.

6.1 Comparison between DUP and ARMS+PRP

We first compare our DUP algorithm to ARMS+PRP to see the advantage of DUP. We varied the
percentage of unobserved actions and the size of recommended actions to see the change of accuracies,
respectively. The results are shown below.

4http://xplan-lab.org//resource/shallow-plan-release.zip
5https://github.com/YantianZha/Discovering-Underlying-Plans-Based-on-Shallow-Models
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Fig. 5. Accuracies of DUP and ARMS+PRP with respect to different percentage of unobserved actions
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Fig. 6. Accuracies of DUP and ARMS+PRP with respect to different size of recommendations

6.1.1 Varying Percentage of Unobserved Actions. In this experiment we would like to see the
change of accuracies of both our DUP algorithm and ARMS+PRP with respect to 𝜉 in 𝒪. We set the
window of training context 𝑐 in Equation (1) to be three, the number of iterations in Algorithm 1 to be
1500, the size of recommendations to be ten, and the learning constant 𝛿 in Equation (7) to be 0.1. For
ARMS+PRP, we generated 20 candidate goals for each testing example including the ground-truth
goal which corresponds to the ground-truth plan to be recognized. The results are shown in Fig. 5.

From Fig. 5, we can see that in all three domains, the accuracy of our DUP algorithm is generally
higher ARMS+PRP, which verifies that our DUP algorithm can indeed capture relations among
actions better than the model-based approach ARMS+PRP. The rationale is that we explore global
plan information from the plan library to learn a “shallow” model (distributed representations of
actions) and use this model with global information to best explain the observed actions. While
ARMS+PRP tries to leverage global plan information from the plan library to learn action models and
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uses the models to recognize observed actions, it enforces itself to extract “exact” models represented
by planning models which are often with noise. When feeding those noisy models to PRP, since
PRP that uses planning techniques to recognize plans is very sensitive to noise of planning models,
the recognition accuracy is lower than DUP, even though ARMS+PRP has more input information
(i.e., initial states and candidate goals) than our DUP algorithm.

Looking at the changes of accuracies with respect to the percentage of unobserved actions, we
can see that our DUP algorithm performs fairly well even when the percentage of unobserved action
reaches 25%. In contrast, ARMS+PRP is sensitive to the percentage of unobserved actions, i.e., the
accuracy goes down when more actions are unobserved. This is because the noise of planning models
induces more uncertain information, which harms the recognition accuracy, when the percentage of
unobserved actions becomes larger. Comparing accuracies of different domains, we can see that our
DUP algorithm functions better in the blocks domain than the other two domains. This is because the
ratio of #word over #vocabulary in the blocks domain is much larger than the other two domains, as
shown in Table 1. We would conjecture that increasing the ratio could improve the accuracy of DUP.
From Fig. 5 (as well as Fig. 7), we can see that it appears that the accuracy of DUP is not affected
by increasing percentages of unobserved actions. The rationale is (1) the percentage of unobserved
actions is low, less than 25%, i.e., there is at most one unobserved action over four continuous actions;
(2) the window size of context in DUP is set to be 3, which ensures that DUP generally has ”stable”
context information to estimate the unobserved action when the percentage of unobserved actions is
less than 25%, resulting in the stable accuracy in Fig. 5 (likewise for Fig. 7).

6.1.2 Varying Size of Recommendation Set. We next evaluate the performance of our DUP
algorithm with respect to the size of recommendation set 𝑆𝑥. We evaluate the influence of the
recommendation set by varying the size from 1 to 10. The size of recommendation set is much
smaller than the complete set. For example, the size of the complete set in the blocks domain is 1250
(shown in Table 1). It is less than 1% even though we recommend 10 actions for each unobserved
action. We set the context window 𝑐 used in Equation (1) to be three, the percentage of unobserved
actions to be 0.25, and the learning constant 𝛿 in Equation (7) to be 0.1. For ARMS+PRP, the number
of candidate goals for each testing example is set to 20. ARMS+PRP aims to recognize plans that are
optimal with respect to the cost of actions. We relax ARMS+PRP to output |𝑆𝑥| optimal plans. The
results are shown in Fig. 6.

From Fig. 6, we find that accuracies of the three approaches generally become larger when the
size of the recommended set increases in all three domains. This is consistent with our intuition,
since the larger the recommended set is, the higher the possibility for the true action to be in the
recommended set. We can also see that the accuracy of our DUP algorithm are generally larger than
ARMS+PRP in all three domains, which verifies that our DUP algorithm can indeed better capture
relations among actions and thus recognize unobserved actions better than the model-learning based
approach ARMS+PRP. The reason is similar to the one given for Fig. 5 in the previous section. That
is, the “shallow” model learnt by our DUP algorithm is better for recognizing plans than both the
“exact” planning model learnt by ARMS for recognizing plans with planning techniques. Furthermore,
the advantage of DUP becomes even larger when the size of recommended action set increases, which
suggests our vector representation based learning approach can better capture action relations when
the size of recommended action set is larger. The possibility of actions correctly recognized by DUP
becomes much larger than ARMS+PRP when the size of recommendations increases.
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Fig. 7. Accuracies of DUP and MatchPlan with respect to different percentage of unobserved actions
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Fig. 8. Accuracies of DUP and MatchPlan with respect to different size of recommendations

6.2 Comparison between DUP and MatchPlan

In this experiment we compare DUP to MatchPlan which is built based on the idea of [23].
Likewise we varied the percentage of unobserved actions and the size of recommended actions to see
the change of accuracies of both algorithms. The results are exhibited below.

6.2.1 Varying Percentage of Unobserved Actions. To compare our DUP algorithm with
MatchPlan with respect to different percentage of unobserved actions, we set the window of
training context 𝑐 in Equation (1) of DUP to be three, the number of iterations in Algorithm 1 to be
1500, the size of recommendations to be ten, and the learning constant 𝛿 in Equation (7) to be 0.1.
To make fair the comparison (with MatchPlan), we set the matching window of MatchPlan to
be three, the same as the training context 𝑐 of DUP, when searching plans from plan libraries ℒ. In
other words, to estimate an unobserved action �̄�𝑥 in 𝒪, MatchPlan matches previous three actions
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Fig. 9. Accuracies of DUP and MatchPlan with respect to different size of training set

and subsequent three actions of �̄�𝑥 to plans in ℒ, and recommends ten actions with the maximal
number of matched actions, considering observed actions in the context of �̄�𝑥 and actions in ℒ as a
successful matching. The results are shown in Fig. 7.

From Fig. 7, we find that the accuracy of DUP is much better than MatchPlan, which indicates
that our DUP algorithm can better learn knowledge from plan libraries than the local matching
approach MatchPlan. This is because we take advantage of global plan information of the plan
library when learning the “shallow” model, i.e., distributed representations of actions, and the model
with global information can best explain the observed actions. In contrast, MatchPlan just utilizes
local plan information when matching the observed actions to the plan library, which results in lower
accuracies. Looking at all three different domains, we can see that both algorithms perform the best
in the blocks domain. The reason is similar to the one provided in the last subsection (for Fig. 5), i.e.,
the number of words over the number of vocabulary in the blocks domain is relatively larger than the
other two domains, which gives us the hint that it is possible to improve accuracies by increasing the
ratio of the number of words over the number of vocabularies.

6.2.2 Varying Size of Recommendation Set. Likewise, we also would like to evaluate the
change of accuracies when increasing the size of recommended actions. We used the same experi-
mental setting as done by previous subsection. That is, we set the window of training context 𝑐 of
DUP to be three, the learning constant 𝛿 to be 0.1, the number of iterations in Algorithm 1 to be 1500,
the matching window of MatchPlan to be three. In addition, we fix the percentage of unobserved
actions to be 0.25. The results are shown in Fig. 8.

We can observe that the accuracy of our DUP algorithm are generally higher than MatchPlan
in all three domains in Fig. 8, which suggests that our DUP algorithm can indeed better capture
relations among actions and thus recognize unobserved actions better than the matching approach
MatchPlan. The reason behind this is similar to previous experiments, i.e., the global information
captured from plan libraries by DUP can indeed better improve accuracies than local informa-
tion exploited by MatchPlan. In addition, looking at the trends of the curves of both DUP and
MatchPlan, we can see the performance of DUP becomes much better than MatchPlan when the
size of recommendations increases. This indicates the influence of global information becomes much
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larger when the size of recommendations increasing. In other words, larger size of recommendations
provides better chance for “shallow” models learnt by DUP to perform better.

6.2.3 Varying Size of Training Set. To see the effect of size of training set, we ran both DUP and
MatchPlan with different size of training set. We used the same setting as done by last subsection
except fixing the size of recommendations to be 10, when running both algorithms. We varied the
size of training set from 2500 to 4500. The results are shown in Fig. 9.

We observed that accuracies of both DUP and MatchPlan generally become higher when the
size of training set increases. This is consistent with our intuition, since the larger the size of training
set is, the richer the information is available for improving the accuracies. Comparing the curves of
DUP and MatchPlan, we can see that DUP performs much better than MatchPlan. This further
verifies the benefit of exploiting global information of plan libraries when learning the shallow
models as done by DUP.
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Fig. 10. Accuracy with respect to different number of iterations in the blocks domain

6.2.4 Accuracy w.r.t. Iterations. In the previous experiments, we set the number of iterations in
Algorithm 1 to be 1500. In this experiment, we would like to see the influence of iterations of our
DUP algorithm when running the EM-style procedure. We changed the number of iterations from
300 to 3000 to see the trend of accuracy. We exhibit the experimental results in the blocks domain
(the results of the other two domains are similar) in Fig. 10.

From Fig. 10, we can see the accuracy becomes higher at the beginning and stays flat when
reaching the size of 1500. This exhibits that the EM procedure converges and has stable accuracies
after the iteration reaches 1500. Similar results can also be found in the other two domains.

6.3 Comparison between RNNPlanner and DUP

In this section we compare RNNPlanner with DUP to see the change of performance with respect to
different distributions of missing actions in the underlying plans to be discovered. In this experiment,
we are interested in evaluating the performance on consecutive missing actions in the underlying
plans since these scenarios often exist in many applications such as surveillance [1]. We first test the
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performance of both RNNPlanner and DUP in discovering underlying plans with only consecutive
missing actions in the “middle” of the plans, i.e., actions are not missing at the end or in the front,
which indicates missing actions can be inferred from both previously and subsequently observed
actions. Then we evaluate both RNNPlanner and DUP in discovering underlying plans with only
consecutive missing actions at the end of the plans, which indicates missing actions can only be
inferred from previously observed actions. After that, we also evaluate the performance of our
RNNPlanner and DUP approaches with respect to the size of recommendation set. In the following
subsections, we present the experimental results regarding those three aspects.

6.3.1 Performance with missing actions in the middle. To see the performance of RNNPlanner
and DUP in cases when actions are missing in the middle of the underlying plan to be discovered, we
vary the number of consecutive missing actions from 1 to 10, to see the change of accuracies of both
RNNPlanner and DUP. We set the window size to be 1 and the recommendation size to be 10. The
results are shown in Fig. 11.
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Fig. 11. Accuracy with respect to missing actions in the middle

From Fig. 11, we can see that the accuracies of both RNNPlanner and DUP generally become
lower when the number of consecutive unobserved actions increasing. This is consistent with our
intuition since the more actions are missing, the less information can be used to help infer the
unobserved actions, which results in low accuracies. Comparing the curves of RNNPlanner and
DUP, we can see that the accuracy of DUP is higher than RNNPlanner at the beginning. This
is because DUP exploits information of both observed actions before and after missing actions to
infer the missing actions, while RNNPlanner just exploits observed actions before missing actions.
When the number of missing actions is larger than 3, the accuracy of DUP both low (i.e., lower
than 0.2). This is because the window size of DUP is set to be 1, which indicates we exploit one
action before the missing actions and one action after the missing actions to estimate the missing
actions. When the consecutive missing actions are more than 1, there may not be sufficient context
information for inferring the missing actions, resulting in low accuracies.

6.3.2 Performance with missing actions at the end. We also would like to see the performance
of RNNPlanner and DUP in discovering missing actions at the end, which is prevalent in application
domains that aim at discovering/predicting future actions. Similar to previous experiments, we vary
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the number of consecutive unobserved or missing actions to see the change of accuracies of both
RNNPlanner and DUP. We set the window size to be 1 and the recommendation size to be 10 as
well. The experimental results are shown in Fig. 12.
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Fig. 12. Accuracy with respect to missing actions in the end.

From Fig. 12, we can observe that the accuracies of both RNNPlanner and DUP generally get
decreasing when the number of consecutive missing actions increases. This is similar to previous
experimental results. That is, the more actions are missing, the less information is available for
estimating the missing actions, which results in lower accuracy. In addition, we can also see that
RNNPlanner generally performs better than DUP, which indicates that the RNNs-based approach,
i.e., RNNPlanner, can indeed better exploit observed actions to predict future missing actions,
since RNNs are capable of flexibly leveraging long or short-term information to help predict missing
actions. We can also see that the performance of both RNNPlanner and DUP decreases sharply when
the number of consecutive missing actions is larger than 3. This is because we set the window size to
be 1 (i.e., we consider three consecutive actions each time we calculate the posterior probability),
which indicates we exploit one action before the missing actions and one action after the missing
actions to estimate the missing actions. When the consecutive missing actions are more than 1,
there may not be sufficient context information for inferring the missing actions, resulting in low
accuracies. Based on our experimental results of ARMS+PRP and MatchPlan (c.f. Figures 5 and
7) they are even worse than our RNNPlanner and DUP when the window size is set to be 1.

6.3.3 Performance with respect to different recommendation size. To see the change with
respect to different recommendation size, we vary the size of recommendation sets from 1 to 10 and
calculate their corresponding accuracies. We test our approaches with four cases: A. there are five
actions missing at the end; B. there are five actions missing in the middle; C. there is one action
missing at the end; D. there is one action missing in the middle. The results are shown in Fig.s 13-16
corresponding to cases A-D, respectively.

Case A:. As shown in Fig. 13, RNNPlanner performs better than DUP mostly, except for when
the recommendation set size is larger/equal to eight in blocks domain. This is because RNNPlanner,
which contains LSTM cells, is able to actively remember or forget past observations (inputs) and
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Fig. 13. Case A: accuracy with respect to different size of recommendations

computations (hidden states). For example, if in a set of sequences, a pattern 𝐴** follows 𝐴* after
three words (i.e., ..., 𝐴*, 𝑤𝑖, 𝑤𝑖+1, 𝑤𝑖+2, 𝐴

**, ...), where 𝑤𝑖, 𝑤𝑖+1, 𝑤𝑖+2 could be any word from
the vocabulary except for 𝐴* and 𝐴**. And if the window size of DUP is smaller than three, then
DUP is not able to utilize this pattern to predict 𝐴** mainly based on 𝐴*. When predicting the 𝐴**,
the DUP with context size one, works by searching for the most similar word to the 𝑤𝑖+2. One would
yet argue that we can set a larger window size for DUP. Larger window size does not necessarily
lead to higher accuracy, since using a larger window size also add more noise in the training of DUP.
Remember that the word2vec model treats equally all possible word pair samples within its context
window.

In addition, observing the accuracies (in terms of the size of recommendation 𝑆𝑥) of all three
domains , we can see only in the blocks domain that DUP outperforms RNNPlanner, when
𝑆𝑥 is larger than eight. Also in the blocks domain, DUP has the best performance, comparing
to how DUP functions in other two domains. This is because plans from the blocks domain has
an overall higher ratio of #word to #vocabulary, which increases the possibility that the word
pattern outside a context window, would reappear inside the window, and consequently help DUP
recognize actions in the missing positions. Coming back to the example when we have a plan like
..., 𝐴*, 𝑤𝑖, 𝑤𝑖+1, 𝑤𝑖+2, 𝐴

**, ..., in blocks domain, it’s more possible the word 𝐴* happens again in
one of 𝑤𝑖, 𝑤𝑖+1, and 𝑤𝑖+2.

Case B:. What we can observe here from Fig. 14, is similar to our observations in case A.
RNNPlanner generally performs better than DUP, except for when the size of recommendation 𝑆𝑥

is larger or equal to nine in blocks domain. It could also be observed that both RNNPlanner and
DUP have the best accuracy performance in the blocks domain.

And by comparing the Fig. 14 in case B (five removed actions in the middle) with Fig. 13 in
case A (five removed actions at the end), we can see that, the accuracy difference between DUP
and RNNPlanner at each size of recommendation along the x-axis, is smaller in case B. This is
because, RNNPlanner only leverages the observed actions before a missing position, whereas DUP
has the advantage of additionally using the observation after a missing position.
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Fig. 14. Case B: accuracy with respect to different size of recommendations
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Fig. 15. Case C: accuracy with respect to different size of recommendations

Case C:. From Fig. 15, we can see that both RNNPlanner and DUP could outperform each other
in certain domains and recommendation set sizes (𝑆𝑥). In blocks domain, DUP is better when 𝑆𝑥 is
larger than five. In depots domain, RNNPlanner is overwhelmingly better than DUP. In driverlog
domain, DUP performs overall better except that, when there is only one recommendation, DUP is
as good as RNNPlanner. This is because the domains blocks are driverlog are not as complex
as depots, and DUP performs better in relative simple domains while worse in complex domains
compared to RNNPlanner.

Case D:. From the results in Fig. 16, we can see that DUP functions better than RNNPlanner
over all three domains, whereas DUP is worse in case A and case B, and could occasionally be better
than RNNPlanner in case C. It makes sense in that, on the one hand, within the fixed and short
context window, if there is very less positions with removed actions, DUP would have an improved
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Fig. 16. Case D: accuracy with respect to different size of recommendations

performance. On the other hand, RNNPlanner is not able to leverage the information from both
sides of a position with a missing action. Therefore, in case D, DUP gains the benefit from both
assumptions that there is only one missing action, and the position of that action is randomly chosen
in the middle of a plan.

7 RELATED WORK
Our work is related to the four aspects on plan recognition, i.e., plan recognition with plan li-
brary, plan recognition with domain knowledge, senor-base activity/plan recognition, and planning
with incomplete domain models. We will introduce the four aspects in the following subsections,
respectively.

7.1 Plan Recognition with Plan Library
Our work is related to plan recognition with plan library. Kautz and Allen proposed an approach to
recognizing plans based on parsing observed actions as sequences of subactions and essentially model
this knowledge as a context-free rule in an “action grammar” [34]. All actions, plans are uniformly
referred to as goals, and a recognizer’s knowledge is represented by a set of first-order statements
called event hierarchy encoded in first-order logic, which defines abstraction, decomposition and
functional relationships between types of events. Lesh and Etzioni further presented methods in
scaling up activity recognition to scale up his work computationally [37]. They automatically
constructed plan-library from domain primitives, which was different from [34] where the plan
library was explicitly represented. In these approaches, the problem of combinatorial explosion
of plan execution models impedes its application to real-world domains. Kabanza and Filion [30]
proposed an anytime plan recognition algorithm to reduce the number of generated plan execution
models based on weighted model counting. Avrahami-Zilberbrand and Kaminka [9] considered
the observed agent to be an adversary and built an efficient hybrid adversarial plan recognition
system that is composed of two processes, i.e., a plan recognizer capable of efficiently detecting
anomalous behavior, and a utility-based plan recognizer incorporating the observer’s own biases.
Mirsky and Gal [44] proposed an efficient algorithm for online plan recognition called Semi-Lazy
Inference Mechanism, which combined both a bottom-up and top-down parsing processes. Massardi
et al. propose an anytime top-down approach [42] to deal with noisy observations based on the plan
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library. These approaches are, however, difficult to represent uncertainty and recognize plans that
are not from the plan library. Although we exploit a library of plans in our DUP and RNNPlanner
approaches, we aim to learning shallow models and utilize the shallow models to recognize plans
that are not necessarily in the plan library, which is different from previous approaches that assume
the plans to be recognized are from the plan library.

7.2 Plan Recognition with Domain Knowledge
Instead of using a library of plans, Ramirez and Geffner [55] proposed an approach to solving the
plan recognition problem using slightly modified planning algorithms, assuming the action models
were given as input (note that action models can be created by experts or learnt by previous systems
[65, 79]). Due to the computational cost of calling a planner twice for each possible goal in [55],
E-Martı́n et al. [20] proposed an approach that can quickly provide a probability distribution over
the possible goals by computing cost estimates using a plan graph. Considering unreliability of a
sensor malfunction or intentional obfuscation by malware, Sohrabi at el. [61] proposed a relaxation
of the plan-recognition-as-planning formulation that allows unreliable observations. Pereira et. al.
[50] proposed two goal recognition heuristics based on planning techniques that rely on planning
landmarks [28]. Saria and Mahadevan presented a hierarchical multi-agent markov processes as a
framework for hierarchical probabilistic plan recognition in cooperative multi-agent systems [57].
Singla and Mooney proposed an approach to abductive reasoning using a first-order probabilistic
logic to recognize plans [59]. Amir and Gal addressed a plan recognition approach to recognizing
student behaviors using virtual science laboratories [7]. Ramirez and Geffner exploited off-the-shelf
classical planners to recognize probabilistic plans [56]. Albrecht and Stone recently provided a
survey on plan recognition in three aspects, i.e., plan recognition in hierarchical plan libraries, plan
recognition by planning in action models, and plan recognition by similarity to past plans [3]. Höller
et al. propose to combine the expressive and compact grammar-like HTN representation with the
advantage of planning techniques for plan and goal recognition [29]. To alliviate the requirement of
complete domain models, Pereira et al. propose to recognize goals using incomplete domain theories
by considering different notions of planning landmarks [51]. Different from those approaches, we do
not require any domain model knowledge provided as input. Instead, we automatically learn shallow
action models from previous plan cases for recognizing unknown plans that may not be identical to
previous cases.

7.3 Sensor-based Activity Recognition
Activity recognition with sensors has been a major focus in the area of artificial intelligence. There
has been an increasing interest in inferring a user’s activities through low-level sensor modeling.
Liao et al. applied a dynamic Bayesian network to estimate a person’s locations and transportation
modes [40] from logs of GPS data with relatively precise location information. Bui et al. introduced
an abstract hidden Markov model to infer a person’s goal from camera data in an indoor environment,
but it is not clear from the article how action sequences are obtained from camera data [12]. Yin et
al. explicitly relied on training a location-based sensor model [66] to infer locations from signals;
the locations are part of the input that can serve as labels in the training data. To reduce the human
labeling effort and cope with the changing signal profiles when the environment changes, Yin et al.
dealt with the second issue by transferring the labelled knowledge [67] between time periods. Pan
et al. proposed to perform location estimation [47, 48] through online co-localization, and apply
multi-view learning for migrating the labelled data to a new time period.

Different from considering location information, Lester et al. propose to build user models [38] for
different users and recognize user activities based on the models. They treat all of the users equally
by simply mixing their data in training. However, different users may behave differently given similar

, Vol. 1, No. 1, Article . Publication date: November 2019.



Discovering Underlying Plans Based on Shallow Models 25

sensor observations. For example, a user may visit the coffee shop for meal and the other just enjoys
sitting in its outdoor couches to read research paper. These two users probably observe similar WiFi
signals, but their activities are quite personalized. This implies that it may not be appropriate to require
all of the users to share one common, user-independent activity recognizer. Therefore, Zheng et al.
proposed to build a personalized activity recognition model [70] by considering the relations among
users. Using sensor data as input, Hodges and Pollack designed machine learning-based systems
[27] for identifying individuals as they perform routine daily activities such as making coffee. Liao
et al. proposed to infer user transportation modes [40] from readings of radio-frequency identifiers
(RFID) and global positioning systems (GPS). Freedman et al. explore the application of natural
language processing (NLP) techniques [21], i.e., Latent Dirichlet Allocation topic models, to human
skeletal data of plan execution traces obtained from a RGB-D sensor. Bulling et al. discussed the
key research challenges [13] that human activity recognition shared with general pattern recognition.
When activity recognition is performed indoors and in cities using the widely available Wi-Fi signals,
there is much noise and uncertainty. Xie et al. proposed a temporal-then-spatial recalibration scheme
to build an end-to-end Memory Attention Networks (MANs) [64] for solving skeleton-based action
recognition task. Chen et al. propose a multi-agent spatial-temporal attention model [14] to jointly
recognize activities of multiple agents. To tackle the limitations of feature extraction and training
data labeling effort, Amado et al. [5, 6] propose to combine goal recognition techniques and deep
autoencoders to explore unsupervised learning to generate domain theories from data and use the
resulting domain theories to deal with incomplete and noisy observations. Qian et al. propose a
distribution based semi-supervised learning approach [54] to recognize human activities.

Many different applications of activity recognition have been studied by researchers. For example,
Pollack et al. show that home-based rehabilitation [53] can be provided for people suffering from
traumatic brain injuries by automatically monitoring human activities. Chu et al. present a model of
interactive activity recognition [15] to determine the user’s state by interpreting sensor data and/or
by explicitly querying the user. The system can be used in an asssistive system for persons with
cognitive disabilities, which can prompt the user to begin, resume, or end tasks. Zheng et al. proposed
to recognize physical activity from Accelerometer Data [71] Using a Multi-Scale Ensemble Method.

Different from the above-mentioned sensor-based activity/plan recognition, we do not assume we
have any labeled sensing data for recognizing plans. Instead, we focus on symbolic plan recognition
in this paper.

7.4 Planning with Incomplete Action Models
Our work is also related to planning with incomplete action models (or model-lite planning [32, 77]).
Fig. 17 shows the schematic view of incomplete models and their relationships in the spectrum of
incompleteness. In a full model, we know exactly the dynamics of the model (i.e., state transitions).
Approximate models are the closest to full models and their representations are similar except that
there can be incomplete knowledge of action descriptions. To enable approximate planners to perform
more (e.g., providing robust plans), planners are assumed to have access to additional knowledge
circumscribing the incompleteness [63]. Partial models are one level further down the line in terms
of the degree of incompleteness. While approximate models can encode incompleteness in the
precondition/effect descriptions of the individual actions, partial models can completely abstract
portions of a plan without providing details for them. In such cases, even though providing complete
plans is infeasible, partial models can provide “planning guidance” for agents [68]. Shallow models
are essentially just a step above having no planning model. They provide interesting contrasts to
the standard precondition and effect based action models used in automated planning community.
Our work in this paper belongs to the class of shallow models. In developing shallow models, we
are interested in planning technology that helps humans develop plans, even in the absence of any
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structured models or plan traces. In such cases, the best that we can hope for is to learn local structures
of the planning model to provide planning support, similar to providing spell-check in writing. While
some work in web-service composition (c.f. [19]) did focus on this type of planning support, they
were hobbled by being limited to simple input/output type comparison. In contrast, we expect shallow
models to be useful in “critiquing” the plans being generated by the humans (e.g. detecting that an
action introduced by the human is not consistent with the model), and “explaining/justifying” the
suggestions generated by humans.

Fig. 17. Schematic view of incomplete models and their relationships in the spectrum of incomplete-
ness

8 CONCLUSION AND DISCUSSION
In this paper we present two novel plan recognition approaches, DUP and RNNPlanner, based on
vector representation of actions. For DUP, we first learn the vector representations of actions from
plan libraries using the Skip-gram model which has been demonstrated to be effective. We then
discover unobserved actions with the vector representations by repeatedly sampling actions and
optimizing the probability of potential plans to be recognized. For RNNPlanner, we let the neural
network itself to learn the word embedding, which would then be utilized by higher LSTM layers.
We also empirically exhibit the effectiveness of our approaches.

In the future, it would be interesting to consider future studies as shown below:
∙ While we focused on a one-shot recognition task in this paper, in practice, human-in-the-loop

planning will consist of multiple iterations, with DUP and RNNPlanner recognizing the plan
and suggesting action addition alternatives; the human making a selection and revising the
plan. The aim is to provide a form of flexible plan completion tool, akin to auto-completers
for search engine queries. To do this efficiently, we need to make the DUP and RNNPlanner
recognition algorithms “incremental.”

∙ The word-vector based action model we developed in this paper provides interesting contrasts
to the standard precondition and effect based action models used in automated planning
community. One of our future aims is to provide a more systematic comparison of the tradeoffs
offered by these models. Although we have focused on the “plan recognition” aspects of this
model until now, and assumed that “planning support” will be limited to suggesting potential
actions to the humans. In future, we will also consider “critiquing” the plans being generated
by the humans (e.g. detecting that an action introduced by the human is not consistent with
the model learned by DUP), and “explaining/justifying” the suggestions generated by humans.
Here, we cannot expect causal explanations of the sorts that can be generated with the help of
complete action models (e.g. [52]), and will have to develop justifications analogous to those
used in recommendation systems.
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∙ Our current study shows that even direct application of word vector learning methods provide
competitive performance for plan completion tasks. We believe we can further improve the
performance by using the planning specific structural information in the EM phase. In other
words, if we are provided with additional planning structural information as input, we can
exploit the structural information to filter candidate plans to be recognized in the EM procedure.

∙ Another potential application for this type of distributed action representations proposed in
this paper is social media analysis. In particular, work such as [35] shows that identification of
action-outcome relationships can significantly improve the analysis of social media threads.
The challenge of course is that such action-outcome models have to be learned from raw and
noisy social media text containing mere fragments of plans. We believe that action vector
models of the type we proposed in this paper provide a promising way of handling this
challenge.

∙ In this paper, we considered distributed representations of actions. In many real-world applica-
tions, however, information in the form of images or texts describing “states” between actions
is ubiquitous. It would be interesting to explore representations of states, via deep learning
models [36], for example, to help recognize plans together with distributed representations of
actions.

∙ The plan to be recognized was assumed to be executed by a single agent in this paper. We
believe that the distributed representations of actions could be extended into handling team
plan recognition [39, 73].

∙ In our RNNPlanner, we exploit a specific RNN model, LSTM, to estimate unobserved
actions based on distributed representations of actions. Considering the effectiveness of other
specific RNN-based models, such as GRU [16], it would be interesting to study the feasibility
of exploring other RNN-based models to improve the recognition accuracy.

∙ In our DUP and RNNPlanner, the models are black boxes to humans. It would be interesting
to study the explicability of the models [69] and consider human awareness [72] in the future
while recognizing underlying plans.
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