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Abstract
Human-aware planning involves generating plans
that are explicable as well as providing explana-
tions when such plans cannot be found. In this pa-
per, we bring these two concepts together and show
how an agent can achieve a trade-off between these
two competing characteristics of a plan. In order
to achieve this, we conceive a first of its kind plan-
ner MEGA that can augment the possibility of ex-
plaining a plan in the plan generation process itself.
We situate our discussion in the context of recent
work on explicable planning and explanation gen-
eration, and illustrate these concepts in two well-
known planning domains, as well as in a demon-
stration of a robot in a typical search and recon-
naissance task. Human factor studies in the latter
highlight the usefulness of the proposed approach.

1 Introduction
It is often useful for an agent while interacting with a hu-
man to use, in the process of its deliberation, not only its
own model MR of the task, but also the model MR

h that
the human thinks it has (as shown in Figure 1). This men-
tal model [Chakraborti et al., 2017a] is in addition to the task
model of the human MH

r (denoting their beliefs, intentions
and capabilities). This is, in essence, the fundamental thesis
of the recent works on plan explanations as model recon-
ciliation [Chakraborti et al., 2017b] and explicable planning
[Zhang et al., 2017] and is in addition to the originally stud-
ied human-aware planning (HAP) problems where actions of
the human (i.e. the human task model and a robot’s belief of
it) are involved in the planning process. The need for explica-
bility and explanations occur when these two models –MR

andMR
h – diverge. This means that the optimal plans in the

respective models – π∗MR and π∗MR
h

– may not be the same
and hence optimal behavior of the robot in its own model may
seem inexplicable to the human.

– In explicable planning, the robot produces a plan π̄ that
is closer to the human’s expected plan, i.e. π̄ ≈ π∗MR

h
.

∗This is an extended version of an abstract that appeared previ-
ously at AAMAS 2018 [Chakraborti et al., 2018].
†Authors marked with ∗ contributed equal.

Figure 1: The explicability versus explanation trade-off in human-
aware planning. The planner accounts for the human’s model of
itself in addition to its own model – it can either bring the former
closer to its own using explanations via the model reconciliation
process so that an otherwise inexplicable plan now makes sense in
the human’s updated model and/or it can produce explicable plans
which are closer to the human’s expectation of optimality.

– During plan explanation (as model reconciliation), it
updates the mental model to an intermediate model M̄R

h
in which the robot’s original plan is equivalent (with re-
spect to a metric such as cost or similarity) to the optimal
one and hence explicable, i.e. π∗MR ≡ π∗M̄R

h
.

Until now, these two processes of plan explanations and ex-
plicability have remained separate in so far as their role in an
agent’s deliberative process is considered - i.e. a planner ei-
ther generates an explicable plan to the best of its ability or it
produces explanations of its plans where they required. How-
ever, there are situations where a combination of both provide
a much better course of action – if the expected human plan
is too costly in the planner’s model (e.g. the human might not
be aware of some safety constraints) or the cost of commu-
nication overhead for explanations is too high (e.g. limited
communication bandwidth). Consider, for example, a human
working with a robot that has just received a software update



Figure 2: A demonstration of the explicability-explanation trade-off. Video link: https://youtu.be/Yzp4FU6Vn0M.

allowing it to perform new complex maneuvers. Instead of
directly trying to conceive all sorts of new interactions right
away that might end up spooking the user, the robot could
instead reveal only certain parts of the new model while still
using its older model (even though suboptimal) for the rest of
the interactions so as to slowly reconcile the drifted model of
the user. This is the focus of the current paper where we try
to attain the sweet spot between plan explanations and expli-
cability during the planning process. To this end:

1. We develop a first of its kind planner that can envisage pos-
sible explanations required of its plans and incorporate these
considerations in the planning process itself.

1a. We show how this allows us to generate explanations
even shorter than the previously proposed “shortest possible”
explanations in [Chakraborti et al., 2017b] given a plan.

1b. Since the explicability problem has been studied in
plan space while explanation generation works in model
space, a viable solution to the balancing act cannot be a sim-
ple combination of the two. Our planner not only computes
a plan given a model but also what model to plan in given
the human mental model. This also means that, in contrast
to explicability-only approaches, we can deal with situations
where an explicable plan does not exist by being able to rec-
oncile model differences in the same planning framework.

2. We illustrate the salient features of the algorithm in two
well-known planning domains and in human factors studies
in a mock search and rescue domain. The empirical evalua-
tions demonstrate the effectiveness of the approach from the
robot’s perspective, while the study highlight its usefulness in
being able to conform to expected normative behavior.

1.1 Illustrative Example
We illustrate our approach on a robot performing an Urban
Search And Reconnaissance (USAR) task – here a remote
robot is put into disaster response operation controlled partly
or fully by an external human commander. This is a typical

USAR setup [Bartlett, 2015] where the robot’s job is to in-
filtrate areas that may be otherwise harmful to humans, and
report on its surroundings as and when required or instructed
by the external. The external usually has a map of the envi-
ronment, but this map is no longer accurate in a disaster set-
ting – e.g. new paths may have opened up or older paths may
no longer be available due to rubble from collapsed structures
like walls and doors. The robot however may not need to in-
form the external of all these changes so as not to cause infor-
mation overload of the commander who may be otherwise en-
gaged in orchestrating the entire operation. This requires the
robot to reason about the model differences due to changes in
the map, i.e. the initial state of the planning problem.

Figure 2 shows a relevant section of the map of the environ-
ment where this whole scenario plays out. A video demon-
stration can be viewed at https://youtu.be/Yzp4FU6Vn0M.
The dark marks indicate rubble that has blocked a passage.
A lot of rubble cannot be removed. The robot (Fetch), cur-
rently located at the position marked with a blue O, is tasked
with taking a picture at location marked with an orange O.
The commander expects the robot to take the path shown in
red, which is no longer possible. The robot has two choices
– it can either follow the green path and explain the revealed
passageway due to the collapse, or compromise on its opti-
mal path, clear the rubble and proceed along the blue path.
The first part of the video demonstrates the plan that requires
the least amount of explanation, i.e. the most explicable plan.
The robot only needs to explain a single initial state change to
make its plan optimal in the updated map of the commander:

remove-has-initial-state-clear_path p1 p8

This is an instance where the plan closest to the human
expectation, i.e. the most explicable plan, still requires an
explanation, which previous approaches in the literature can-
not provide. Moreover, in order to follow this plan, the robot
must perform the costly clear passage p2 p3 action to
traverse the corridor between p2 and p3, which it could have

https://youtu.be/Yzp4FU6Vn0M
https://youtu.be/Yzp4FU6Vn0M


avoided in its optimal (green) path. Indeed, the robot’s opti-
mal plan requires the following explanation:

add-has-initial-state-clear_path p6 p7
add-has-initial-state-clear_path p7 p5
remove-has-initial-state-clear_path p1 p8

By providing this explanation, the robot is able to convey
to the human the optimality of the current plan as well as the
infeasibility of the human’s expected plan (shown in red).

1.2 Related Work
The need for human-aware agents to be able to explain their
behavior has received increased attention in recent times
[Langley et al., 2017; Rosenthal et al., 2016]. This is high-
lighted in the success of recent workshops on explainable AI
[XAI, 2018] and planning in particular [XAIP, 2018].

Efforts to make planning more “human-aware” have
largely focused on incorporating an agent’s understanding
of the human model MH into its decision making. Since
then the importance of considering the human’s understand-
ing MR

h of the agent’s actual model MR in the planning
process has also been acknowledged, sometimes implicitly
[Alami et al., 2014] and later explicitly [Zhang et al., 2017;
Chakraborti et al., 2017b]. These considerations allow a
human-aware agent to conceive novel and interesting behav-
iors by reasoning both in the space of plans as well as models.

In the model space, modifications to the human mental
modelMR

h may be used for explanations [Chakraborti et al.,
2017b] while reasoning over the actual task modelMH can
reveal interesting behavior by affecting the state of the hu-
man, such as in [Chakraborti et al., 2015]. In the plan space,
a human-aware agent can useMH andMR

h to compute joint
plans for teamwork [Talamadupula et al., 2014] or generate
behavior that conforms to the human’s preferences [Alami et
al., 2006; Alami et al., 2014; Cirillo et al., 2010; Koeckemann
et al., 2014; Tomic et al., 2014; Chakraborti et al., 2016]
and expectations [Dragan et al., 2013; Zhang et al., 2017;
Kulkarni et al., 2019] and create plans that help the human
understand the robot’s objectives [Sadigh et al., 2016].

In general, preference modeling looks at constraints on
plan generation if the robot wants to contribute to the human
utility, while explicability addresses how the robot can adapt
its behavior to human expectation (as required by the human
mental model). For a detailed treatise of these distinctions,
we refer the reader to [Chakraborti et al., 2019a].

2 Human-Aware Planning
A Classical Planning Problem is a tuple M = 〈D, I,G〉
with domain D = 〈F,A〉 - where F is a set of fluents
that define a state s ⊆ F , and A is a set of actions -
and initial and goal states I,G ⊆ F . Action a ∈ A
is a tuple 〈ca, pre(a), eff±(a)〉 where ca is the cost, and
pre(a), eff±(a) ⊆ F are the preconditions and add/delete ef-
fects, i.e. δM(s, a) |= ⊥ if s 6|= pre(a); else δM(s, a) |=
s ∪ eff+(a) \ eff−(a) where δM(·) is the transition function.

Note that the “model”M of a planning problem includes the
action model as well as the initial and goal states of an agent.
The solution toM is a sequence of actions or a (satisficing)

plan π = 〈a1, a2, . . . , an〉 such that δM(I, π) |= G. The cost
of a plan π is C(π,M) =

∑
a∈π ca if δM(I, π) |= G; ∞

otherwise. The optimal plan has cost C∗M.

A Human-Aware Planning (HAP) Problem is the tuple
Ψ = 〈MR,MR

h 〉 whereMR = 〈DR, IR,GR〉 andMR
h =

〈DR
h , IRh ,GRh 〉 are the planner’s model of a planning problem

and the human’s understanding of the same1. There can be
two kinds of solutions to HAP problems, as discussed below.

2.1 Explicable Plans
An explicable solution to an HAP is a plan π (1) executable
in the robot’s model and (2) closest to the expected (optimal)
plan in the human’s model –

(1) δMR(IR, π) |= GR; and

(2) C(π,MR
h ) ≈ C∗MR

h
.

“Closeness” or distance to the expected plan is modeled
here in terms of cost optimality, but in general this can be any
metric such as plan similarity. In existing literature [Zhang
et al., 2017; Kulkarni et al., 2019] this has been achieved by
modifying the search process so that the heuristic that guides
the search is driven by the robot’s knowledge of the human
mental model. Such a heuristic can be either derived directly
[Kulkarni et al., 2019] from the mental model or learned
[Zhang et al., 2017] through interactions in the form of affin-
ity functions between plans and their purported goals.

2.2 Plan Explanations
The other approach would be to (1) compute optimal plans in
the planner’s model as usual, but also provide an explanation
(2) in the form of a model update to the human so that (3) the
same plan is now also optimal in the updated mental model.
Thus, a solution involves a plan π and an explanation E –

(1) C(π,MR) = C∗MR ;

(2) M̄R
h ←−MR

h + E ; and

(3) C(π,M̄R
h ) = C∗M̄R

h
.

A model update, as indicated by the + operator, may in-
clude a correction to the belief (goals or state information)
as well as information pertaining to the action model itself,
as illustrated in [Chakraborti et al., 2017b]. As a result of
this explanation, the human and the agent both agree that the
given plan is the best possible the latter could have come up
with. Note that whether there is no solution in the human
model, or just a different one, does not make any difference.
The solution is still an explanation so that the given plan is the
best possible in the updated human model. On the other hand,
if there is no plan in the robot model, the explanation ensures
that there is no plan in the updated human model either.

1Note that this does not assume that humans use an explicitly
represented symbolic domain to plan. The robot only uses this to
represent the information content of that model. It cannot, of course,
have direct access to it. There is extensive work on learning such
models (c.f. [Zhang et al., 2017; Kulkarni et al., 2019] and reasoning
with uncertainty over them [Sreedharan et al., 2018]. It is true that
this estimate might be different from the ground truth. However, an
agent can only plan and explain with what it knows.



Authors in [Chakraborti et al., 2017b] explored many such
solutions – including ones that minimize length, called min-
imally complete explanations or MCEs. However, this was
done post facto, i.e. the plan was already generated and it
was just a matter of finding the best explanation for it. This
not only ignores the possibility of finding better plans that are
also optimal but with smaller explanations, but also misses
avenues of compromise whereby the planner sacrifices its op-
timality to reduce the overhead of the explanation process.

3 The MEGA Algorithm
We bring the notions of explicability and explanations to-
gether in a novel planning technique MEGA (Multi-model Ex-
planation Generation Algorithm) that trades off the relative
cost of explicability to providing explanations during the plan
generation process itself2. The output of MEGA is a plan π and
an explanation E such that (1) π is executable in the robot’s
model, and with the explanation (2) in the form of model up-
dates it is (3) optimal in the updated human model while (4)
the cost (length) of the explanations and the cost of deviation
from optimality in its own model to be explicable is traded
off according to a constant α –

(1) δMR(IR, π) |= GR;

(2) M̄R
h ←−MR

h + E ;

(3) C(π,M̄R
h ) = C∗M̄R

h
; and

(4) π = arg minπ { |E| + α× | C(π,MR)− C∗MR | }.

The objective thus takes into account the cost of choosing
a particular plan by considering the cost difference (distance)
with the optimal plan and the cost to explain it. The trade-off
is thus not with respect to the total cost of the generated plan
but the additional cost it suffers (but can avoid) in order to ap-
pear explicable. Clearly, with higher values of α the planner
will produce plans that require more explanation; with lower
α it will generate more explicable plans. The cost of an expla-
nation not only includes the cognitive burden on the human
in understanding/processing it but also the cost of communi-
cating it from the point of view of the robot. For the purposes
of this paper, we use explanation length as a proxy for both
aspects of explanation costs. For example, the larger an ex-
planation, the harder it may be to understand for the human
– existing work [Chakraborti et al., 2017b] also use the same
assumption. Similarly, a robot in a collapsed building during
a search and rescue operation, or a rover on Mars, may have
limited bandwidth for communication and prefer shorter ex-
planations. α thus has to be determined by the designer. As
we show later in the evaluations, the decision of α should also
be based on the target population and the choice may not be
static – i.e. the robot can vary it depending on its situation
(e.g. if it is able to communicate more).

In the illustrative examples of the robot in the USAR task,
the first plan it came up with (involving a slightly suboptimal
plan and a short explanation) was indeed for lower value of α

2As in [Chakraborti et al., 2017b] we assume that the hu-
man mental model is known and has the same computation power
([Chakraborti et al., 2017b] also suggests possible ways to address
these issues, the same discussions apply here as well).

Figure 3: The search stops at the blue node which houses a model
where the generated plan is optimal. The green node with the best
value of the objective function is then selected as the solution.

while the second one (optimal with a larger explanation) was
for a higher value of α. Interestingly, the first case is also an
instance where the plan closest to the human expectation, i.e.
the most explicable plan, still requires an explanation, which
previous approaches in the literature cannot provide.

Model Space Search
We employ a model space A∗ search to compute the ex-
pected plan and explanations for a given value of α. Sim-
ilar to [Chakraborti et al., 2017b] we define a state repre-
sentation over planning problems with a mapping function
Γ : aM 7→ F which represents a planning problem by
transforming every condition in it into a predicate. The set
Λ of actions contains unit model change actions which make
a single change to a domain at a time. The algorithm starts
by initializing the min node tuple (N ) with the human mental
model MR

h and an empty explanation. For each new possi-
ble model M̄ generated during model space search, we test if
the objective value of the new node is smaller than the current
min node. We stop the search once we identify a model that is
capable of producing a plan that is also optimal in the robot’s
own model. This is different from the original MCE-search
[Chakraborti et al., 2017b] where the authors are trying to
find the first node where a given plan is optimal. Finally, we
select the node with the best objective value as the solution.

Property 1 MEGA yields the smallest possible explanation
for a given human-aware planning problem.

This means that with a high enough α the algorithm is guaran-
teed to compute the best possible plan for the planner as well
as the smallest explanation associated with it. This is by con-
struction of the search process itself, i.e. the search only ter-
minates after the all the nodes that allow C(π,M̄R

h ) = C∗M̄R
h

have been exhausted. This is beyond what is offered by the
model reconciliation search in [Chakraborti et al., 2017b],
which only computes the smallest explanation given a plan
that is optimal in the planner’s model.

Property 2 α = | MR ∆ MR
h | (i.e. the total number of

differences in the models) yields the most optimal plan in the
planner’s model along with the minimal explanation possible.
This is easy to see, since with ∀E , |E| ≤ | MR ∆ MR

h |,
the latter being the total model difference, the penalty for de-
parture from explicable plans is high enough that the planner
must choose from possible explanations only (note that the
explicability penalty is always positive until the search hits
the nodes with C(π,M̄R

h ) = C∗M̄R
h

, at which point onwards



Algorithm 1 MEGA
1: procedure MEGA-SEARCH

2: • Input: HAP Ψ = 〈MR,MR
h 〉, α

3: • Output: Plan π and Explanation E
4: fringe← Priority Queue()
5: c list← {} . Closed list
6: Nmin ← 〈MR

h , {}〉 . Track node with min. value of obj.
7: fringe.push(〈MR

h , {}〉, priority = 0)

8: while True do
9: 〈M̄, E〉, c← fringe.pop(M̄)

10: if OBJ VAL(〈M̄, E〉) ≤ OBJ VAL(Nmin) then
11: Nmin ← 〈M̄, E〉 . Update min node
12: end if

13: for ∀π∗M̄ do . This is relaxed in optimistic version
14: if C(π∗M̄,M

R) = C∗MR then
. Search is complete when π∗M̄ is optimal inMR

15: 〈Mmin, Emin〉 ← Nmin
16: return 〈πMmin , Emin〉
17: else
18: c list← c list ∪ M̄
19: for f ∈ Γ(M̄) \ Γ(MR) do

. Misconceptions in the mental model
20: λ← 〈1, {M̄}, {}, {f}〉 . Remove from M̄
21: if δMR

h
,MR(Γ(M̄), λ) 6∈ c list then

22: fringe.push(〈δMR
h
,MR(Γ(M̄), λ)

E ∪ λ〉, c+ 1)
23: end if
24: end for
25: for f ∈ Γ(MR) \ Γ(M̄) do

. Missing conditions in the mental model
26: λ← 〈1, {M̄}, {f}, {}〉 . Add to M̄
27: if δMR

h
,MR(Γ(M̄), λ) 6∈ c list then

28: fringe.push(〈δMR
h
,MR(Γ(M̄), λ)

E ∪ λ〉, c+ 1)
29: end if
30: end for
31: end if
32: end for
33: end while

34: procedure OBJ VAL(〈M̄, E〉)
35: return |E| + α× | minπ∗M̄

C(π∗M̄,M
R)− C∗MR |

36: . Consider optimal plan in M̄ that is cheapest inMR

37: end procedure
38: end procedure

the penalty is exactly zero). In general this works for any
α ≥ |MCE| but since an MCE will only be known retro-
spectively after the search is complete, the above condition
suffices since the entire model difference is known up front
and is the largest possible explanation in the worst case.

Property 3 α = 0 yields the most explicable plan.

Under this condition, the planner minimizes the cost of ex-
planations only – i.e. it will produce the plan that requires
the shortest explanation, and hence the most explicable plan.
Note that this is distinct from just computing the optimal plan
in the mental model, since such a plan may not be executable

in the robot model so that some explanations are required
even in the worst case. This is also a welcome addition to the
“explicability only” view of planning in [Zhang et al., 2017;
Kulkarni et al., 2019] which do not deal with situations where
a completely explicable plan does not exist, as done here us-
ing the explanations associated with the generated plans.

Property 4 MEGA-search is required only once per problem,
and is independent of α.

The algorithm terminates only after all the nodes containing
a minimally complete explanation have been explored. This
means that for different values of α, the agent only needs
to post-process the nodes with the new objective function in
mind. Thus, a large part of the reasoning process for a partic-
ular problem can be pre-computed.

Property 5 A balanced solution is non-unique.

This is similar to standalone explicable plans and plan expla-
nations – i.e. there can be many solutions to choose from,
for a given α. Interestingly, solutions that are equally good
according to the cost model can turn out to be different in
usefulness to the human, as investigated recently in [Zahedi
et al., 2019] in the context of plan explanations only. This can
have similar implications to balanced solutions as well.

Approximate MEGA
MEGA evaluates executability (in the robot model) of all opti-
mal plans within each intermediate model during search. This
is quite expensive. Instead, we implement MEGA-approx
that does this check only for the first optimal plan that gets
computed. This means that, in Alogirthm 1, we drop the loop
(line 16) and have a single opitmality cost (line 38). This has
the following consequence.

Property 6 MEGA-approx is not complete.

MEGA-approx is an optimistic version of MEGA and is not
guaranteed to find all balanced solutions. This is because
in each search node we are checking for whether an opti-
mal plans – the first one that gets computed – is executable
in the robot model, and moving on if not. In models where
multiple optimal plans are possible, and some are executable
in the robot model while others are not, this will result in
MEGA-approx discarding certain models as viable solu-
tions where a balanced plan was actually possible. The result-
ing incompleteness of the search means we lose Properties 1
and 3, but it also allows us to compare directly to [Chakraborti
et al., 2017b] where the optimal plan is fixed.

4 Empirical Evaluations
We will now provide evaluations of MEGA-approx demon-
strating the trade-off in the cost and computation time of plans
with respect to varying size of the model difference and the
hyper-parameter α. We will then report on human factor stud-
ies on how this trade-off is received by users. The former
evaluates from the perspective of the robot which is able to
minimize communication but also the penalty due to explica-
bility. The user study instead evaluates the effect of this on
the human. The code is available at https://bit.ly/2XTKHz0.

https://bit.ly/2XTKHz0


(a) The Rover (Meets a Martian) Domain

(b) The Barman (in a Bar) Domain

Figure 4: Explicability vs. explanation costs w.r.t. α.

4.1 Part-1: Cost Trade-off
α determines how much an agent is willing to sacrifice op-
timality versus the explanation cost. We will illustrate this
trade-off on modified versions of two popular IPC3 domains.

The Rover (Meets a Martian) Domain
Here the IPC Mars Rover has undergone an update whereby
it can carry the rock and soil samples needed for a mis-
sion at the same time. This means that it does not need
to empty the store before collecting new rock and soil
samples anymore so that the new action definitions for
sample soil and sample rock no longer contain the
precondition (empty ?s).

During its mission it runs across a Martian who is un-
aware of the robot’s expanded storage capacity, and has an
older, extremely cautious, model of the rover it has learned
while spying on it from its cave. It believes that any time the
Rover collects a rock sample, it also needs to collect a soil
sample and need to communicate this information to the lan-
der. The Martian also believes that before the rover can per-
form take image action, it needs to send the soil data and
rock data of the waypoint from where it is taking the image.
Clearly, if the rover was to follow this model, in order not to
spook the Martian it will end up spending a lot of time per-
forming unnecessary actions (like dropping old samples and
collecting unnecessary samples). For example, if the rover

3From the International Planning Competition (IPC) 2011: http:
//www.plg.inf.uc3m.es/ipc2011-learning/Domains.html

∆ = 2 ∆ = 7 ∆ = 10
|E| Time |E| Time |E| Time

Rover
p1 0 1.22 1 5.83 3 143.84
p2 1 1.79 5 125.64 6 1061.82
p3 0 8.35 2 10.46 3 53.22

Barman
p1 2 18.70 6 163.94 6 5576.06
p2 2 2.43 4 57.83 6 953.47
p3 2 45.32 5 4183.55 6 5061.50

Table 1: Runtime (secs) and size of explanations E with respect to
the size of model difference ∆.

is to communicate an image of an objective objective2,
all it needs to do is move to a waypoint (waypoint3) from
where objective2 is visible and perform the action –

(take_image waypoint3 objective2 camera0 high_res)

If the rover was to produce a plan that better represents the
Martian’s expectations, it would look like –

(sample_soil store waypoint3)
(communicate_soil_data waypoint3 waypoint3 waypoint0)
(drop_off store)
(sample_rock store waypoint3)
(communicate_rock_data waypoint3 waypoint3 waypoint0)
(take_image waypoint3 objective1 camera0 high_res)

If the rover uses an MCE here, it ends up explaining 6
model differences. In some cases, this may be acceptable, but
in others, it may make more sense for the rover to bear the ex-
tra cost rather than laboriously walk through all updates with
an impatient Martian. Figure 4 shows how the explicability
and explanation costs vary for problem instances in this do-
main. The algorithm converges to the smallest possible MCE,
when α is set to 1. For smaller α, MEGA saves explanation
cost by choosing more explicable (and expensive) plans.

The Barman (in a Bar) Domain
Here, the brand new two-handed Barman robot is wowing
onlookers with its single-handed skills, even as its admirers
who may be unsure of its capabilities expect, much like the
standard IPC domain, that it needs one hand free for actions
like fill-shot, refill-shot, shake etc. This means
that to make a single shot of a cocktail with two shots of the
same ingredient with three shots and one shaker, the human
expects the robot to –

(fill-shot shot2 ingredient2 left right dispenser2)
(pour-shot-to-used-shaker shot2 ingredient3 shaker1 left)
(refill-shot shot2 ingredient3 left right dispenser3)
(pour-shot-to-used-shaker shot2 ingredient3 shaker1 left)
(leave left shot2)
(grasp left shaker1)

The robot can, however, directly start by picking both the
shot and the shaker and does not need to put either of them
down while making the cocktail. Similar to the Rover do-
main, we again illustrate (Figure 4) how at lower values of
α the robot generates plans that require less explanation. As
α increases the algorithm produces plans that require larger
explanations with the explanations finally converging at the
smallest MCE required for that problem.

http://www.plg.inf.uc3m.es/ipc2011-learning/Domains.html
http://www.plg.inf.uc3m.es/ipc2011-learning/Domains.html


Gains due to Trade-off
Table 1 illustrates how the length of explanations computed
square off with the total model difference ∆. Clearly, there
are significant gains to be had in terms of minimality of ex-
planations and the reduction in cost of explicable plans as a
result of it. This is something the robot trades off internally
by considering its limits of communication, cost model, etc.
We will discuss the external effect of this (on the human) later
in the discussion of human factors studies we conducted.

Computation Time
Contrary to classical notions of planning that occurs in state
or plan space, we are now planning in the model space, i.e.
every node in the search tree is a new planning problem. As
seen in Table 1, this can be time consuming (even for the
approximate version) with increasing number of model dif-
ferences between the human and the robot, even as there are
significant gains to be had in terms of minimality of explana-
tions, and the reduction in cost of explicable plans as a result
of it. MEGA-approx remains comparable with the origi-
nal work on model reconciliation [Chakraborti et al., 2017b]
which also employs model space search, though we are solv-
ing a harder problem (computing the plan in addition to its
explanation). Interestingly, in contrast to [Chakraborti et al.,
2017b], the time taken here (while still within the bounds of
the IPC Optimal Track) is conceded at planning time rather
than at explanation time, so the user does not have to actually
ask for an explanation and wait.

An interested reader may also refer to existing works
on model space search [Keren et al., 2016; Chakraborti et
al., 2017b] which introduces heuristics and approximations
which are equally applicable here and can considerably speed
up the process. However, the focus of our work is instead on
the interesting behaviors that emerge from considering expla-
nations during the plan generation process.

4.2 Part-2: Human Factors Evaluations
We use the USAR domain introduced before to analyze how
human subjects respond to the explicability versus explana-
tions trade-off. The experimental setup (reproduced here in
part of clarity) derives from those used to study the model
reconciliation process in [Chakraborti et al., 2019b]. Here,
we extend those results to balanced plans. Specifically, we
set out to test two key hypothesis –

H1. Subjects would require explanations when the robot
comes up with suboptimal plans.

H1a. Response to balanced plans should be indistin-
guishable from inexplicable / robot optimal plans.

H2. Subjects would require less explanations for explicable
plans as opposed to balanced or robot optimal plans.

H1 is the key thesis of recent works on explanations
[Chakraborti et al., 2017b; Sreedharan et al., 2018] that for-
mulates the process of explanation as one of model reconcil-
iation to achieve common grounds with respect to a plan’s
optimality. This forms the basis of incorporating considera-
tions of explanations in the plan generation process as well, as
done in the paper, in the event of model differences with the
human in the loop. H2 forms the other side of this coin and

Figure 5: Interface for the external (reused with permission from
[Chakraborti et al., 2019b]; please refer to the same for details.

completes the motivation of computing balanced plans. Note
that balanced plans would still appear suboptimal (and hence
inexplicable) to the human even though they afford opportu-
nities to the robot to explain less or perform a more optimal
plan. Thus, we expect (H1a) their behavior to be identical in
case of both robot optimal and balanced plans.

Experimental Setup
The experimental setup exposes the external commander’s in-
terface to participants who get to analyze plans in a mock
USAR scenario. The participants were incentivized to make
sure that the explanation does indeed help them understand
the optimality of the plans in question by formulating the in-
teraction in the form of a game. This is to make sure that
participants were sufficiently invested in the outcome as well
as mimic the high-stakes nature of USAR settings to accu-
rately evaluate the explanations. Figure 5 shows a screenshot
of the interface which displays to each participant an initial
map (which they are told may differ from the robot’s actual
map), the starting point and the goal. A plan is illustrated
in the form of a series of paths through various waypoints
highlighted on the map. The participant had to identify if the
plan shown is optimal. If unsure, they could ask for an ex-
planation. The explanation was provided in the form of a set
of changes to the player’s map. The player was awarded 50
points for correctly identifying the plan as either optimal or
satisficing. Incorrect identification cost them 20 points. Ev-
ery request for explanation further cost them 5 points, while
skipping a map did not result in any penalty. Even though
there were no incorrect plans in the dataset, the participants
were told that selecting an inexecutable plan as either feasible
or optimal would result in a penalty of 400 points, in order to
deter them from guessing when they were unsure.

Each subject was paid $10 as compensation for their par-
ticipation and received additional bonuses depending on how
well the performed (≤ 240 to ≥ 540 points). This was done
to ensure that participants only ask for an explanation when
they are unsure about the quality of the plan (due to small neg-



ative points on explanations) while they are also incentivized
to identify the feasibility and optimality of the given plan cor-
rectly (large reward and penalty on doing this wrongly).

Each participant was shown 12 maps. For 6 of them, they
were was shown the optimal robot plan, and when they asked
for an explanation, they were randomly shown different types
of explanations from [Chakraborti et al., 2017b]. For the rest,
they were either shown a (explicable) plan that is optimal in
their model with no explanation or a balanced plan with a
shorter explanation. We had 27 participants, 4 female and 22
male of age 19-31 (1 participant did not reveal their demo-
graphic) with a total of 382 responses across all maps.

Experimental Results
Figure 6 shows how people responded to different kinds of
explanations / plans. These results are from the two problem
instances that included both a balanced and a fully explicable
plan. Out of 54 user responses to these, 13 were for explica-
ble plans and 12 for the balanced ones. From the perspective
of the human, the balanced plan and the robot optimal plan
do not make any difference since both of them appear sub-
optimal. This is evident from the fact that the click-through
rate for explanations in these two conditions are similar (H1a)
(the high click-through rates for perceived suboptimality con-
form to the expectations of H1a). Further, the rate of expla-
nations is much less for explicable plans as desired (H2).

Table 2 shows the statistics of the explanations / plans.
These results are from 124 problem instances that required
MCEs as per [Chakraborti et al., 2017b], and 25 and 40 in-
stances that contained balanced and explicable plans respec-
tively. As desired, the robot gains in length of explanations
but loses out in cost of plans produced as it progresses along
the spectrum of optimal to explicable plans. Thus, while Ta-
ble 2 demonstrates the explanation versus explicability trade-
off from the robot’s point of view, Figure 6 shows how this
trade-off is perceived from the human’s perspective.

It is interesting to see that in Figure 6 almost a third of the
time participants still asked for explanations even when the
plan was explicable, i.e. optimal in their map. This is an arti-
fact of the risk-averse behavior incentivized by the gamifica-
tion of the explanation process and indicative of the cognitive
burden on the humans who are not (cost) optimal planners.
Furthermore, the participants also did not ask for explana-
tions around 20-25% of the time when they “should have”
(i.e. suboptimal plan in the human model). There was no
clear trend here (e.g. decreasing rate for explanations asked
due to increasing trust) and was most likely due to limitations
of inferential capability of humans. Thus, going forward, the
objective function should look to incorporate the cost or dif-
ficulty of analyzing the plans and explanations from the point
of view of the human in addition to that in MEGA(4) and Ta-
ble 2 modeled from the perspective of the robot.

Finally, in Figure 7, we show how the participants re-
sponded to inexplicable plans, in terms of their click-through
rate on the explanation request button. Figure 7(left) shows
the % of times subjects asked for explanations while Fig-
ure 7(right) shows the same w.r.t. the number of partici-
pants. They indicate the variance of human response to the
explicability-explanations trade-off. Such information can be

Figure 6: Percentage of times subjects asked for explanations for
different plan types, illustrating reduced demand for explanations for
explicable plans with no significant difference for balanced plans.

Figure 7: Click-through rates for explanations.

Optimal Plan Balanced Plan Explicable Plan
|E| C(π,MR) |E| C(π,MR) |E| C(π,MR)
2.5 5.5 1 8.5 - 16

Table 2: Statistics of explicability vs. explanation trade-off.

used to model the α parameter to situate the explicability ver-
sus explanation trade-off according to preferences of individ-
ual users. It is interesting to see that the distribution of par-
ticipants (right inset) seem to be bimodal indicating that sub-
jects are either particularly skewed towards risk-averse be-
havior or not, rather than a normal distribution of responses
to the explanation-explicability trade-off. This is somewhat
counter-intuitive and against expectations (H1) and further
motivates the need for learning α interactively.

5 Conclusion
We saw how an agent can be human-aware by balancing the
cost of departure from optimality (in order to conform to hu-
man expectations) versus the cost of explaining away causes
of perceived suboptimality. It is well known how humans
make better decisions when they have to explain [Mercier and
Sperber, 2011]. In this work, in being able to reason about the
explainability of its decisions, an AI planning agent is simi-
larly able to make better decisions by explicitly considering
the implications of its behavior on the human mental model.
The work leaves open several intriguing avenues of further re-
search, including how an agent can consider implicit commu-
nication of model differences via ontic and epistemic effects
of its actions. In ongoing work [Sreedharan et al., 2019], we
are exploring these ideas in a unified framework.
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