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Abstract

In this paper, we build on the latest in automated planning
techniques to develop a generalized framework for course-
independent design of Intelligent Tutoring Systems (ITSs).
This is meant to provide targeted and personalized assis-
tance to students, in order to meet the demands of the in-
creasing class size, as well as help instructors who can use
higher level specifications to design courses without having
to worry about building the course-specific tutoring assis-
tance. Thus the aim of this paper is to demonstrate what auto-
mated planning can bring to the table for the design of course-
independent ITS features. We will illustrate these capabilities
in Dragoon, an ITS deployed at Arizona State University.

1 Introduction

While the last decade has seen massive advances in tech-
nologies aimed at creation and dissemination of knowledge
across a variety of platforms, concerns remain as to how ef-
fectively this knowledge is absorbed at the user (student)
end. This is especially true for both massive open online
courses (MOOCs) and also for (rapidly growing sizes of)
physical classrooms where targeted attention towards indi-
vidual students is often hard to provide. The state-of-the-
art in student and instructor support technology has tra-
ditionally struggled to catch up with the demands of the
rapidly evolving landscape of education in the 21°¢ century.
In this paper, we address this by proposing a framework
for the design of generic course-independent student and in-
structor support capabilities using techniques in the field of
human-aware planning, and demonstrate those features in
Dragoon, a celebrated intelligent tutoring system.

1.1 Learning 2.0

The world of learning is indeed changing fast - information
can now be provided across a variety of platforms to large
groups of people who can access on demand knowledge and
participate in the learning process as a community. This is
the Learning 2.0 paradigm (Seely Brown and Adler 2008),
and requires a rethink of the affordances (McLoughlin and
Lee 2007) expected from current learning tools.

Learning on Demand Learning on demand refers to
the increasing popularity of individual student-centric and
topic-driven learning achieved on the web — i.e. students
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pick a particular topic they want to learn about and actively
consume content just based on that, instead of participat-
ing in an entire class or following through an entire curricu-
lum. For example, consider that you want to learn about re-
gression — you could log on to Coursera, complete the rele-
vant tutorials and assignments on regression, and leave the
course. This requires a rethink of traditional curriculum gen-
eration and course recommendation approaches that would
traditionally compute end to end curricula for an entire class.
It follows that such new approaches must be able to leverage
detailed student models to provide effective support.

Social Learning One of the many advantages of social
platforms for learning is peer feedback and community par-
ticipation — i.e. social learning (Burke 2011). This involves
two critical aspects — knowledge advancement as a commu-
nity (Scardamalia and Bereiter 2006) and information pro-
cessing (Webb 2013) on the part of the individual student
as a member of that community. In a sense, this can even
be seen as a proxy towards providing individual classroom
attention from the instructor. However, forming study part-
ners remains an arduous task, especially in large classrooms
such as in online learning communities where students usu-
ally do not know most of their classmates (or their skill sets).
It is also fraught with the usual pitfalls associated with group
work including individual students hogging all the group ac-
tivity or slackers not contributing to the group activity at
all (Mesch 1991). Without principled drivers for building
in-class communities that can promote learning, effective
collaborations are hard to achieve. As such, forming use-
ful teams for collaborative study can become a problem by
itself rather than a facilitator for learning to the extent that
students can end up spending too much effort in forming
and maintaining teams or just prefer to study by themselves,
thus leaving the potential benefits of a social learning envi-
ronment largely untapped. Recent work has shown that peer
recommendations can have positive impact (Labarthe et al.
2016) on student engagement but has remained ambiguous
(Bouchet et al. 2017) as to the best way to go about it.

1.2 A Brief History of ITS and Al

ITSs are aimed to provide personalized support to students
and bring in expert (human) tutors in the loop wherever nec-
essary, thus reducing the burden on the instructor as well as
improving the learning experience of the student. In fact, it
has been shown that when designed correctly, an ITS can



be as effective as a human teacher (VanLehn 2011). A thor-
ough description of the different components of ITSs can
be found in (Vanlehn 2006). Existing applications of such
systems range from solving numerical problems like Andes
(Gertner and VanLehn 2000) which can help in teaching ba-
sic laws of physics (Schulze et al. 2000), Dragoon (VanLehn
et al. 2017), Q&A type problems as in Autotutor (Graesser
et al. 2005) or for an SQL tutor (Mitrovic 2003). ITSs, of
course, go beyond individual information processing stage
and find uses in knowledge building as a community (Mag-
nisalis, Demetriadis, and Karakostas 2011) as well, thereby
embracing the principles of the Learning 2.0 paradigm.

Student Assessment Models One of the most important
capabilities an ITS needs to have is to be able to estimate
the (mental) model or capabilities of the student. This has
been explored in the context of the (1) item response theory
(IRT) (Hambleton, Swaminathan, and Rogers 1991) which
treats learning and testing as separate processes and the (2)
Bayesian knowledge tracing (BKT) theory (Corbett and An-
derson 1994) which considers a more dynamic model of the
student state. The latter becomes more relevant in the con-
text of ITSs that can provide more dynamic feedback and
hints as discussed next. Indeed this is an issue where Al tech-
niques have been deployed before for dynamic modeling of
the evolution of the student model in terms of knowledge
components, concentration / focus levels, etc. (Murray, Van-
Lehn, and Mostow 2004). This includes different techniques
such as decision theoretic approaches (i.e. Markov Decision
Processes or MDPs) (Murray, VanLehn, and Mostow 2004;
Murray and VanLehn 2006), and reinforcement learning
(Chi, VanLehn, and Litman 2010; Mandel et al. 2014,
Mandel 2017). This paper assumes for the most part! that
these techniques are available and builds on top of that as-
sumption, i.e. being able to estimate the student model is
necessary for ITS techniques and we want to demonstrate,
from the perspective of automated planning how this can be
exploited to provide a better learning experience to a student.

Feedbacks and Hints Once the ITS has estimated a model
of the student, it can provide targeted feedback to improve
the learning process. Existing work in this area (Barnes and
Stamper 2010; Stamper et al. 2013; Rivers and Koedinger
2013;2017) has largely focused on ITSs operating as recom-
mender systems. This paper is largely situated in this space
but aimed at providing much more sophisticated feedback
in both the inner and outer loops (Vanlehn 2006) of an ITS
which requires longer-term sequential reasoning.

1.3 What can planning bring to the table?

Automated planning, as a field, has been around ever since
the inception of Al and is considered a necessary ability of
any autonomous system — the ability to reason about and de-
cide on a course of action (CoA) or plan given the current
state of the world. Many of the challenges faced in the design

'In fact, the “model reconciliation” technique discussed later
can handle uncertain models (Sreedharan, Chakraborti, and Kamb-
hampati 2018) and can even be modified to function as an estimator
for the student model but this is outside the scope of the paper.

of an ITS bears parallels to the planning agenda — making a
curriculum, solving a given problem, or in general dealing
with the combinatorics of orchestrating a class can be po-
tentially seen through the lens of planning, i.e. computing
a sequence of steps given a set of constraints. This was the
starting point of our investigation in this direction.
However, when operating with humans in the loop, tradi-
tional planning techniques are not sufficient (Kambhampati
and Talamadupula 2015). A “human-aware” planner must
be able to take into account the (mental) model (Chakraborti
et al. 2017a) of the user. Recent work (Sengupta et al. 2017)
has looked at how planning techniques can evolve in the con-
text of decision support to guide the planning process of a
human decision-maker. This includes support for plan vali-
dation, critiquing, recommendation, explanations, and so on.
Much of the discussion here derives inspiration from recent
advances in the planning community along these directions.

Contributions Thus, to answer the question what auto-
mated planning can do for the ITS scene, we build on the
following two features of planning techniques —

* Domain independence — Planning techniques have been
particularly geared towards domain-independent solu-
tions — i.e. algorithms that can work across a variety of
domains provided in higher-level specification. This is es-
pecially useful in the contexts of ITSs which have tradi-
tionally been restricted to class or course specific solu-
tions that do not generalize; and

* Model-based reasoning — Personalized support for stu-
dents require higher level and sequential reasoning about
the course and student models, planning techniques re-
main ideally suited for this.

In this paper, we expound on the above two themes to —

- Provide targeted feedback when students are stuck on
problems by leveraging the student model; (Section 3.2)

- Compute on demand curriculum based on class materials
requested by the student; (Section 3.3)

- We will show how this technique can be used to teach
concepts to a student to attain different levels of exper-
tise as desired by the student; and

- We will show how student models may be composed to
form joint plans of study.

- Generate class curriculum in the spirit of social learning
by including fellow classmates in a student’s curriculum
while also guaranteeing desired properties of the curricu-
lum — e.g. that students not only learn but also apply all
the concepts at least once. (Section 3.4)

We do not, of course, set out to model the full scope of
challenges? in building and end-to-end ITS. However, we
recognize that much of the existing work on deploying ITS

2For example, the current discussion only focuses on the learn-
ing and interaction phase and does not include post-hoc reflec-
tion / evaluations as explored in (Katz, O’Donnell, and Kay 2000;
Katz, Allbritton, and Connelly 2003; Connelly and Katz 2009)



systems, if not in conceptualizing them, has focused on spe-
cific learning platforms or courses without any coherent ap-
proach or general principles of design and implementation
of the roles usually attributed to ITSs. The aim of this paper
is thus to introduce techniques from the planning commu-
nity that can formalize some of these concepts and provide
a generalized framework for building such systems from the
ground up. This has useful implications for both the plan-
ning as well as the educational technologies communities —
i.e. the former can provide solutions to existing problems
in ITSs (as we demonstrate in this paper) while feedback
form the learning community can provide useful feedback
towards the refinement of said techniques, including defin-
ing new areas of research of mutual interest. The biggest
advantage of such an approach, as mentioned above, is that
the techniques are domain-independent, i.e. they are defined
at the procedural level and can be grounded with the de-
scription of a particular course as specified by the instruc-
tor. Of course, the problem of knowledge representation is
(for a specific course and assignments in it) remain a chal-
lenge, but the ITS features themselves generalize given the
proposed planning framework.

2 Background

In the following, we will introduce concepts from the plan-
ning literature that will be used in the rest of the paper.

A Classical Planning Problem (CPP) (Russell and
Norvig 2003) is the tuple M = (D,Z,G) with domain
D = (F, A) - where F is a set of fluents that define a state
s € F, and A is a set of actions - and initial and goal states
Z,G ¢ F. Action a € A is a tuple (c,,pre(a),eff (a))
where ¢, is the cost, and pre(a),eff*(a) ¢ F are the pre-
conditions and add/delete effects, i.e. Ipq(s,a) E Lifs ¥
pre(a); else Sp(s,a) = sueff(a) N eff (a) where S (+)
is the transition function. The cumulative transition function
i5 Ot (5, (01,2, - @) = opa(aa (5, 1), @, . 1n)).
A CPP is represented using the Planning Domain Definition
Language or PDDL (McDermott et al. 1998).

A Plan Generator Module (PGM) (Helmert 2006) com-
putes a solution to a CPP M as sequence of actions or a (sat-
isficing) plan m = (a1, as, .. .,a,) such that p(Z,7) = G.
The cost of mis C(m, M) = ¥ 4en Ca if OMm(Z,7) = G; 00
otherwise. The cheapest plan 7* = arg min,. C(7, M) is the
optimal plan with cost C'} ;.

A Plan Validation Module (PYM) (Howey, Long, and
Fox 2004) outputs, given plan 7 and planning problem M,
True iff Spm(Z, 7) E G; False otherwise.

A Plan Recognition Module (PRM) (Ramirez and
Geffner 2010) outputs, given a partial plan 7 and a plan-
ning problem M, a plan 7 that maximizes the probability
that 7 is a sub-plan of 7 —

T < argmin,, P([ﬁ]:ilgl

Note that the above approach does not directly compute this.
Instead, we use the compilation approach from (Ramirez and
Geffner 2009) to compute the optimal plan that satisfies a
set of observations given a goal as the output of the PRM.

A Landmark Generation Module (LGM) (Hoffmann,
Porteous, and Sebastia 2004) outputs, given a planning prob-
lem M, a set of state (or action) landmarks £ containing
states (or actions) that must be passed through (or executed)
in any satisficing solution of M. Thus —

- An action landmark a € A requires that a €
Vr:om(Z,m) =G

- A state landmark s € F' is such that V7 : pq(Z,7) = G,
k<

341" 604(Z, %) E 5. (Zhu and Givan 2003)
A Human-Aware Planning Problem (HAP) is given by
the tuple ¥ = (M, MH) where M = (DH TH GH)
is the human’s understanding of the planning problem M
(Chakraborti et al. 2017a).

An Explicable Planning Module (EPM) computes a plan
m such that it is a satisficing solution to M and is as close as
possible to the expected plan in the human’s model (Zhang
et al. 2017; 2016; Kulkarni et al. 2016) —

C(m, M) » Clyn

A Plan Explanation Module (PEM) outputs, given a
HAP ¥ = (M, M) and the optimal solution 7* to M, the
shortest explanation (Chakraborti et al. 2017b) in the form
of a model update to the human mental model M so that
the same plan is now also optimal in the human’s updated
mental model M¥ of the problem —

C(m*, M) = O,

The PEM can, in fact, trade off (Chakraborti, Sreedharan,
and Kambhampati 2018) the relative cost of explicability
(i.e. deviation from optimality in the planner’s model) to the
cost (i.e. length) of explanations during the plan generation
process itself by computing a plan 7 and an explanation or
model update £ such that 7 is a solution to M and is the
optimal solution to M modulated by a hyperparameter o —

< argmin_ |€] + ax|C(m,M)-Cj|

With higher o, PEM computes plans that require more ex-
planation, while with lower «, it generates more explicable
plans. We refer to this variant as PEM(«).

Internally, PEM performs what is referred to as a model
space search to come up with these explanations. This is
done using unit edit functions X that progressively try out
one or more updates to the model M* from the set of
possible updates in MAM? until the optimality condi-
tions as described above are satisfied. This is known as the
process of model reconciliation (Chakraborti et al. 2017b;
Chakraborti, Sreedharan, and Kambhampati 2018).

3 ITS as Planning

We will now cast the design of a generic ITS in terms of the
planning modules discussed in the previous section.

3.1 Class Configuration
A class configuration is defined as the tuple —

C= ({KC7}7 {Ti}a {Ai}v {SZ}>



- Knowledge Components or Concepts: {KC'} is a set of
knowledge components or concepts K C;. In ITS litera-
ture, the process of knowledge acquisition by a student
has been decomposed into smaller components referred
to as KCs (Koedinger, Corbett, and Perfetti 2010). KCs
can be anything from a production rule (Mayer 1981), to
a facet, misconception, fact or even a skill (Bloom, of Col-
lege, and Examiners 1964). The aim of the social learning
process is to make a student acquire different KCs based
on their and their classmates already existing ones.

- Tutorial: The class also constitutes of a set {7;} of tuto-
rials T; ¢ {KC;} that consist of a set of KC's on which
they provide information on. These directly modify the
student’s knowledge state by providing information on
specific topics or on how certain problems or (parts of)
assignments may be solved. These form an integral part
of a curriculum for the class.

- Activities / Assignments: The class also has a set {A;} of
activities or assignments A; = (M, k) where M is the
model of the assignment and x € { KC;} consists of a set
of K C's that are required to solve it. These engage the stu-
dent in actions that derive from knowledge introduced in
the class (learning by doing). These form the core content
of the class. Technically, these can also be used as sens-
ing actions for the ITS in determining the knowledge state
of the student. Thus, an assignment may be used both as a
way of estimating the student model as well as a technique
for imparting knowledge to the student.

- Finally, the class has a set {S;} of students .S;. The
student knowledge state or model is defined as S; =
({A?}, k1, ko) where A7 is the student’s understanding
(similar to the definition of a HAP) of the assignment
model A; and k1, k2 € {KC;} consists of a set of KC's
that they have learned and applied respectively.

Given a class configuration C, a curriculum is given by a
sequence ¢(C) = (c1,¢a,...,cn);ci € {Ti} U{A;} u{S;} of
tutorials, assignments and partnerships with other students.

3.2 Tips and Hints

A solution to an assignment in a general sense can be seen as
a sequence of steps, a.k.a. a plan. Thus, we posit that a large
variety of assignments can in fact be modeled in terms of the
planning problem. The model A;(M) of an assignment A;
(as mentioned before) is thus the model of a planning prob-
lem CPP. As explored in (Sengupta et al. 2017) in the context
of decision support using automated planners, this opens up
the slew of planning techniques (described in Section 2) that
can be readily adopted to provide targeted (problem specific
but domain independent) feedback to the students.

Solution Validation For a partial attempt (represented as
a partial plan 7) on an assignment A;, the Plan Validation
Module (PVM) indicates conditions that were unsatisfied,
which can be used to provide targeted feedback. For exam-
ple, the PVM can be used by the instructor to auto-grade
solutions proposed by a student, since this is a domain in-
dependent way of checking if the plan is a valid solution of
the given assignment (represented as a CPP A;(M)). This is

also useful for the student as well who can receive immedi-
ate feedback on whether they are successful (and why, if not)
without having to wait for the instructor. This is one of the
features that most ITSs already possess. However, they are
usually system level implementations that do not generalize
across assignments.

Solution Completion For a partial attempt (represented as
a partial plan 7) on an assignment A;, the Plan Recognition
Module (PRM) produces a completion that can be sampled
from to provide hints that guide the student towards the full
solution. The PRM thus allows the ITS to anticipate what ac-
tions the student needs to take given what they have already
done in order to achieve their goal. Notice that the partial
plan is generated by the student (from the model Af ) even
though the completion is done using A;. This can thus help
the student in cases of cognitive overload, but not if they lack
the knowledge to solve the problem, i.e. A7 # A;. We will
discuss ways to deal with the latter case in Sections 3.3.

The PRM module can be also used to provide proactive sup-
port by recognizing that the students is going astray and
providing pop-ups to guide them towards the right solution.
Proactive support and has been shown (Zhang et al. 2015;
Sengupta et al. 2017; Chakraborti et al. 2017¢) to be desir-
able of an artificial agent in collaborative settings. Interest-
ingly, one could also imagine using the PRM to detect gam-
ing of the tutoring system (Muldner et al. 2010) by defining
it as a possible goal that a student might be trying to achieve,
and based on the observations identify whether a student is
working diligently or trying to game the system.

Problem Summarization Finally, the Landmark Genera-
tion Module (LGM) takes in the Classical Planning Problem
(CPP) representation A;(M) for a specific assignment A;
and produces a set of steps (action landmarks) or situations
(state landmarks) that the student must go through in order
to solve the assignment. This can be very useful in providing
a concise summary of “TODOs” required of the student to
arrive at the solution, or by considering the domain variables
that the student has already set to true, measure the progress
of a student and thereby help the instructor in classroom or-
chestration (Dillenbourg et al. 2011).

We shall illustrate each of these use cases in Section 5.1.

3.3 On-demand Curriculum Generation

A typical feature of online learning, as we discussed in
Section 1, is that students increasingly select a subset of
class materials to follow and leave once they are done (e.g.
MOOC:s are known to have notoriously low completion rates
(Amy Ahearn 2017)). As a result, students end up follow-
ing individual and different curricula asynchronously. From
the students’ perspective an obvious problem with this is
that they might not have the required knowledge to com-
plete the materials they want. In the following, we thus ad-
dress the problem of on-demand curriculum generation. In
this paradigm, the student selects a particular assignment A;
to complete and the ITS performs argumentation with the
assignment model A; (M) and the students model of the



assignment Af (M) to identify deficiencies in the student
model that need to be addressed using relevant tutorials.

In order to achieve this, the ITS spawns an instance of
the Plan Exg)lanation Module (PEM) with the HAP ¥ =
(A; (M), A7 (M)) — here the instructor model is the ground
truth and the student model needs to be reconciled. The
model edit functions A are the tutorials in the class. The
output of the PEM is thus the optimal set of tutorials (this
forms the recommended curriculum) that guarantees that the
same solution (plan) is optimal in both the student model as
well as the instructor model (even though they are not equal).
This is especially useful since the instructor model is going
to contain information pertaining to the entire class, while
the student does not need to know all these details in or-
der to solve a specific assignment. The PEM is thus able to
leverage the student and instructor models of an assignment
to provide the exact set of tutorials that the student requires.
We will provide illustrations of this process in Section 5.2.
Notice that, the ITS can either use its estimate of Af or en-
gage in active information gathering by asking the student
questions to determine parts of the student model it is un-
certain about (Sreedharan, Chakraborti, and Kambhampati
2018), in order to meet the specific needs of the student.

Teaching as an o trade-off Notice that the formulation
of the assignments as planning problems allow us to spawn
CCPs with the student models (indicating how the student
can solve the problem) or the instructor model (indicating
how the instructor will solve the same problem) or anywhere
in between (as computed by PEM(«)). The student solu-
tion (equivalent to an explicable plan) is likely to be sub-
optimal, or in most cases, not feasible in the ground truth
or instructor model. An instantiation of PEM(«) with the
HAP ¥ = (A;(M), A¥(M)) thus allows us to modulate
the level of expertise with which a student wants to solve an
assignment. For low values of «, the ITS will recommend
the smallest possible curriculum that will just enable the stu-
dent to solve the assignment (albeit suboptimally) while for
progressively higher values of « it will start recommending
more and more advanced curriculum to the point it matches
the output of PEM, i.e. the optimal complete curriculum.
From the perspective of the instructor as well, the o hyperpa-
rameter can be gradually increase from a low value to gen-
erate study materials for individual students as the course
progresses. Thus the teaching process itself can be viewed
through the lens of the model reconciliation process as one
of modulation of the value of « in the PEM(«). We shall
demonstrate this in Section 5.2.

Remark To the best of our knowledge, algorithms for the
on-demand curriculum generation process driven by a spe-
cific class activity, and the argumentation process over the
curriculum with the desired expertise level of student, have
not been explored before in the ITS literature. This tech-
nique can be useful from the perspective of both the instruc-
tor and the student — e.g. the former can stagger the course
content to meet the student’s expertise level, while the lat-
ter can chose to learn at different levels of expertise (thus
possibly reducing the high dropout rates that plague the on-
demand learning communities).

Composition of Student Models Finally, we note that we
can extend the model edit functions in the PEM from just
the tutorials in the class to the other student models as well.
Thus the model updates during the model reconciliation pro-
cess can be affected by either the KCs provided by tutorial or
a composition of one or more student models. The output of
PEM will now provide an optimal recommendation of tuto-
rials and potential study partners based on the skill sets (i.e.
models) of the individual students.

3.4 The Jigsaw Problem

The Jigsaw Problem is the process of creating smaller
groups in a class for cooperative learning (Aronson 1997).
It has shown to have positive effect on students learning
the course material together, and then engaging in discus-
sions. This leads to a more active and deeper learning in
class (Aronson 2011). Aronson, points out ten fixed steps
to achieve this where the groups are created based on the
ethnicity, race, gender and ability. However, it is intractable
for a teacher to reason about all the student models and cre-
ate study groups. Casting the class-level curriculum gener-
ation problem as a planning problem allows us to generate
curricula for the entire class while enabling the instructor to
specify desired properties of the curricula that needs to be
maintained. These properties may be —

- Maximum size of study groups;
- Specific assignments of students;

- No repetition (or conversely, continuation) of study part-
ners; and soon...

- In this paper, we specifically focus on the following prop-
erty — every student not only learns but applies all con-
cepts in the class at least once. This is especially impor-
tant in the social learning paradigm, to ensure that stu-
dents have mastered all concepts and not depended on
other students to finish a shared curriculum.

In order to achieve this, we define a planning problem with
the start state compiled from the class configuration C and
a goal state that model a class configuration where VS; :
Si(ke) = {KC;} —i.e. every student has applied all the con-
cepts in class. The operators are generated from the set of
tutorials and assignments — the tutorial operator has its as-
sociated KCs as effects of being learned; while assignment
operators has KCs as preconditions (that need to be learned)
and effects (of those KCs having been applied).

This formulation® thus not only ensures that all the stu-
dents have mastered all the concepts in the class materials
but also that the length of the curriculum is reduced (from
|{:S;}| times the length of the curriculum for individual stu-
dents) due to the collaborations across students who can
bring in complementary skill sets and transfer knowledge.
We provide an illustration of this in Section 5.3.

*Note that this problem may be solved by horizon-limited plan-
ning, which is known to be NP-complete, the horizon being equal
to |{S; }| times the length of the curriculum for individual students,
which is the worst case curriculum length when no groups could be
found. Thus, the jigsaw problem does not need the full expressive-
ness of CPP which is known to be PSPACE-complete.
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Figure 1: [llustration of the different stages of a “plan” being executed by a student in Dragoon — (1) the empty interface at
the start of the problem (initial state); (2) the first node being completed; (2) the second node being created; and finally (3) the

problem being completed with the feedback on the graph.

4 Introducing Dragoon

We will illustrate the above capabilities in Dragoon an
ITS developed at Arizona State University to teach dynamic
system modeling (VanLehn 2013) in the physical classroom
setting — over the course of almost half a decade of deploy-
ment, the system has served 13 courses with approximate
class sizes of 30, with more than a 1000 sessions per class.
It is an ideal testbed for studying the nuances of tutoring
systems currently deployed in classes in the space of math-
ematics, algebra and any other generic step-based tutoring
systems. Figure 1 provides a snapshot of the interface.

In dynamic system modeling, a system is a part of the en-
vironment and dynamic system is the part of the environment
that changes with time. Usually, first (or higher) order dif-
ferential equations (differentiated with respect to time) rep-
resent dynamic systems mathematically. For simplicity of
solving differential equations, time is discretized to calcu-
late the values of different quantities. A Model refers to a
representation of the system in a formal language.

Dragoon’s formal language is based on Stella’s stock
and flow network (Doerr 1996). It consists of three dif-
ferent types of quantities — (1) accumulator (quantity
that changes); (2) function (quantity that may or may not
change); and (3) parameter (quantity that remains con-
stant). These quantities are called nodes. To create a node a
student needs to define its properties —i.e. description, type,
value, units and equation. They are connected to each other
by equations called relations. Students are taught template
structure for interaction between nodes, which show partic-
ular rate of change in values called schemas — e.g. linear
schema represents linear change in values while exponential
schemas represent exponential changes. Students practice on
Dragoon through tutorial and assignment workbooks. A
detailed description of Dragoon is available at (Wetzel et
al. 2017; VanLehn et al. 2016; 2017).

4.1 The Isle Royale Workbook

We use the Isle Royale Workbook (https://goo.gl/
ECrNnt) to illustrate the proposed techniques. It teaches
students population dynamics of moose and wolf population
and learn interactions in a predator prey environment. There
are six problems in the workbook (time step is a year) —

¢ Isle-1 — Linear growth model of moose population, that is
constant growth of two moose.

* Isle-2 — Exponential growth model of moose population.
The problem defines a constant growth rate which is mul-
tiplied by the population in the previous time-step to cal-
culate the net growth.

* Isle-3 — Exponential growth and death model of moose
population. This problem adds the a constant death rate
and the change in moose population is defined as the dif-
ference number of moose born and died.

¢ Isle-4 — Exponential growth and death model of moose
population with a fixed carrying capacity of the environ-
ment which effects the moose death rate.

¢ Isle-5 — Exponential growth and death model of Wolf
Population. This model is similar to Isle 3 problem.

¢ Isle-6 — Exponential growth and death model of moose
and wolf population with constant effect of wolf (preda-
tor) population on death rate of moose (prey) and constant
effect of moose population on birth rate of wolf.

Epidemic schema is sometimes confused with exponential
schema. Thus, we use one extra problem modeling flu epi-
demic in college which spreads through meetings between
students. The number of students in the meeting and the
chance that a student is affected is assumed to be constant.

The Zener Diode Problem Most problems in Dragoon
are solved with a single or unique set of steps. The only



thing that changes is the sequence in which nodes are cre-
ated. However, there are a few problems which can be solved
in multiple ways, where a student can change the equa-
tions in the nodes to solve the problem in lesser number of
nodes. One such problem is to model a Zener diode using
Dragoon — if a student has a more advanced understanding
of circuit theory, then they can easily solve the problem in
fewer steps (i.e. using fewer nodes). We will thus use this
problem to demonstrate the usefulness of PEM(«).

5 ITS as Planning in Action

We will now illustrate how the techniques introduced in Sec-
tion 3 manifests themselves on Dragoon. The first step is
to construct the instructor model M’ — examples can be ac-
cessed at —https://goo.gl/cyVthK.

We used nested object types to represent different objects
in Dragoon, i.e. node, schema (KCs) and properties. Accu-
mulator, parameter and function were of type node. Linear,
exponential, extended_exponential, carrying_capacity and
epidemic were types of schema. Description, value, type,
equation and units are type of properties. These object types
were used to define the state variables which characterize the
properties that were part of a node, nodes that were part of
schema, and schemas that were part of the problem. The op-
erators in the domain represent the actions that are available
student in the Dragoon environment. For example, a stu-
dent fills each property to complete a node and it can be done
in a fixed order. So the operator definitions were also related
to initializing a node, filling every property of the node, com-
pleting a node and completing a schema. Students need an
understanding of the schema to fill the type and equation of
the node. Thus actions for those steps have a precondition of
has_schema to create the node. Finally, the initial state con-
sists of all the nodes and schemas that are part of the assign-
ment as well as the knowledge state of the student, that is
whether they understand the schemas required to solve the
problem. The goal state required that the student complete
all the schemas that are present in a given problem.

5.1 Tips and Hints (c.f. Section 3.2)

Plan Validation Figure 2, shows the 20-step solution for
Isle-2, and Figure 1 shows some of these actions in the
Dragoon environment. Figure 2 presents the incomplete
attempt of the student being flagged as unsuccessful by the
PVM, and shows the error generated after executing the in-
complete plan in the Dragoon interface.

Plan Recognition Figure 3 shows the correct identifica-
tion by the PRM among two possible solutions of the Isle-3
assignment using the “exponential_growth” schema or the
“exponential_decay” schema from partial observations of
the actions of the student in Dragoon.

Landmarks Figure 4 shows the 35 state landmarks pro-
duced by the LGM for the Isle-3 assignment.

5.2 On-demand Curriculum Generation
(c.f. Section 3.3)

We use the same domain that we used in tips and hints. We
are testing the case where a student wants to solve the Isle-4

problem. Figure 5 shows the output of PEM when a stu-
dent expresses a desire to complete the Isle-4 assignment
and requests a curriculum for it. The explanation presents
the model differences in the initial state that prevents the
student from completing the assignment at this time and sug-
gests tutorials to introduce these concepts. The explanation
is of size 3, and references the missing knowledge concepts
that are needed for solving the problem in the 40 steps.

Figure 6 shows how PEM(«) can be used to modulate the
expertise levels of the recommended curriculum. The com-
plete curriculum is of size 3 after which the problem can
be solved in 17 steps. But, with lower value of «, the prob-
lem can be solved with a longer 20 step plan. As explained
earlier, even though the student needs two knowledge con-
cepts to solve the problem (zener_voltage_regulator and kvl
schema), but to solve the optimal plan a student needs to be
an expert and improve the equations in one of the nodes and
create a better model for Zener Diode problem.

5.3 Jigsaw Problem (c.f. Section 3.4)

Here, we took an instance of a Dragoon class with 7 con-
cepts and 9 assignments. A single student curriculum comes
out as 12 steps long, with 7 tutorials and 5 assignments.
However, with the introduction of groups of two students,
this reduces to a combined curriculum of 23 steps where
every student applies every concept at least once. For ev-
ery new student, plan size increases by 11 steps, showing
that one of the assignment can be done in the group. This is
shown in Figure 7, which plots the curriculum length with
increasing class sizes. In this particular class configuration,
only one of the assignments could be done in a group.

Now we study the effect of varying class configurations
by the making assignments that randomly teach up to 4 con-
cepts. The number of concepts were fixed to 10 and there
were 20 assignments that would teach these concepts. Fig-
ure 8 shows the curriculum length for 50 different randomly
generated four student class configurations. We observe a
decrease of 3 to 7 steps in every class.

Conclusion and Work in Progress

In this paper, we demonstrated how an ITS framework can
be built using the state-of-the-art in human-aware planning
techniques for the design of course independent support fea-
tures. The last section illustrated these properties in a real
tutoring system Dragoon. Currently, we are working on in-
tegrating these features into Dragoon in order to perform
ablation studies of the system with one or more of the sup-
port components deployed in a real class. We hope to report
on those results in future iterations of the paper.
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[create_node moose_birth_probabilityl]
(create_node moose_births)
(create_node moose_population)
(FLlL_description da moose_population)

5 (fill_type_single_schema ta da moose_population si exponential_growth)
(fill_equation_single_schema ea ta moose_population s1 exponential_growth)
(FLLL_units ua ta moose_population)

(fill_value va ta moose_population)
5 (complete_accumulator da ta va ua ea moose_population)
(fill_description df moose_births)
(fill_type_single_schema tf df moose_births si exponential_growth)
(fill_equation_single_schema ef tf moose_births s1 exponential_growth)
13 (Fill_units uf tf moose_births)
(complete_function df tf uf ef moose_births)
(fill_description dp moose_birth_probability)
(fill_type_single_schema tp dp moose_birth_probability si exponential_growth)
17 (fill_units up tp moose_birth_probability)

(fill_value vp tp moose_birth_probability)

(complete_parameter dp tp vp up moose_birth_probability)

(conplete_exponential_schema moose_birth_probability moose_births moose_population exponential_growth s1)

1 ; cost = 20 (unit cost)

[create_node moose_birth_probabilityl]

(create_node moose_births)

(create_node moose_population)

4 (fill_description da moose_population)
5 (Fill_type_single_schema ta da moose_population s1 exponential_growth)

(f{l1_units va ta moose_population)

(fill_value va ta moose_population)

(complete_accumulator da ta va ua ea moose_population)

(fill_description df moose_births)

(fill_type_single_schema tf df moose_births s1 exponential_growth)

11 (fill_equation_single_schema ef tf moose_births s1 exponential_growth)
12 (Fill_units uf tf moose_births)

(complete_function df tF uf ef moose_births)

(fill_description dp moose_birth_probability)

(fill_type_single_schema tp dp moose_birth_probability si exponential_growth)

(Fill_units up tp moose_birth_probability)

(complete_parameter dp tp vp up moose_birth_probability)

(conplete_exponential_schema moose_birth_probability moose_births moose_population exponential_growth s1)
19 ; cost = 18 (unit cost)

Plan failed to execute
Plan Repair Advice:

(complete accumulator da ta va ua ea moose population) has an unsatisfied precondition at time 8
(Set (is_filled ea moose population) to true)

successful plans:
value: 20
../fast-downward/isle2_complete_plan 26

Failed plans:
../fast-downward/isle

_incomplete plan

| ]

Figure 2: Response of PVM to the correct and incorrect or
incomplete attempts in the Isle-3 problem.

Bxperiment=. ./test-pr2/test-dragoon/test-dragoon. tar.bz2

Num_Hyp=2

Hyp_Atoms=(applied exponential schema moose birth probability moose births moose population)
Hyp_Test Failed=True

Hyp_Cost_0=10000000 .000000

Hyp_Cost_Not_0=10000000.000000

Hyp_Prob_0=6.500000

Hyp_Prob_Not 0=6.500000

Hyp_Plan_Time 0=0.630000

Hyp_Plan_Time Not_0=0.040000

Hyp_Trans_Time=0.050000

Hyp_Plan_Time=0.070000

Hyp_Test Time=0.120000

Hyp_Is True=False

Hyp Atoms=(applied exponential schema moose death probability moose deaths moose population)
Hyp Test Failed=True

Hyp_Cost_0=10000000.000000

Hyp7C05(7N0t7 =10000000 . 000000

Hyp Prob_ 0=
Hyp_Prob_Not 0=6.

1 Hyp_Plan_Time_0=0.620000
Hyp_Plan_Time Not_0=6.040000
Hyp_Trans_Time=0.030000
Hyp Plan_Time=0.060000
Hyp Test Time=0.090000
Hyp_Is True=True

| Create Node | | Graph | | Table | Hinis | Prettify | Help sons Learned | | Done

First 60 yrs of moose population

@

o X
“ ) X
% i ®

2 X

X

o e
° moose moose
FEES moose deaths population

probability
Assumptions:

* The moose population is 20 in the first year (1900).

* Births and deaths are the only change in the population.
Immigration and emigration do not occur.

* The probability of a moose giving birth each year is 20%.
* The probability of a moose dying each year is 5%.

Figure 3: The output of the PRM in the Isle-3 problem which
can be solved in two separate ways. Here the student seemed
to have decided to work on the exponential_decay schema.

1 B4 Atom applied_exponential schema(moose birth_probability, moose births, moose population)
33 Atom applied exponential schema(moose death probability, moose deaths moose_population)

8 Atom applied schema(exponential decay)

17 Atem applied schema(exponential growth)

1 Atom is complete(moose birth probability)

6 18 Atom is_filled(upl, moose_birth_probability)

7 4 Atom is filled(vpl, moose birth prubablhty)

5 19 Atom is filled(tpl, moose birth probability)

9 21 Atom is_filled(dpl, moose birth_probability)

16 20 Atom init(moose birth probability)

6 Atom is complete(moose births)

5 Atom is filled(ef1, moose births)

3 Atom is filled(ufl, moose births)

7 Atom is_filled(tfl, moose_births)

24 Atem is filled(dfl, moose births)

6 @ Atom init(moose births)

31 Atom is_complete(moose_death_probability)

: 29 Atom is filled(up2, moose death probability)

28 Atom is filled(vp2, moose death probability)

13 Atem is filled(tp2, moose death probability)

16 Atom is filled(dp2, moose death probability)

9 Atom init(moose_death_probability)

30 Atom is_complete(moose deaths)

26 Atom is filled(ef2, moose deaths)

11 Atom is_filled(uf2, moose_deaths)

32 Atem is filled(tf2, moose deaths)

27 Atom is filled(df2, moose deaths)

12 Atom init(moose_deaths)

) 14 Atom is cumplete(mnnse population)

2 Atom is_filled(ea, moose_population)

23 Atom 157fllled(ua mnuseipupulatmn)

22 Atom is filled(va, moose population)

25 Atom is_fiLled(ta. moose_population)

16 Atem is filled(da, moose population)

15 Atom init(moose population)

Ve w

Figure 4: The 35 state landmarks generated by the LGM for
the Isle-3 problem.

Explanation >> has-initial-state-has_schema s1 carrying capacity
Explanation >> has-initial-state-has_schema s1 exponential_decay

Explanation >> has-initial-state-has_schema s1 exponential_growth
Explantion Size: 3

Total Time 24.517663002

Figure 5: On-demand curriculum generated by the PEM.
This is the smallest change to the student model required
to solve the Isle-4 problem.

Burrent explanation 2

['create_node current_thru_r'

‘create_node v_across_load"

'create_node v_across_r1'

'f111_description df4 v_across_ri

'fil1 type_double_schema tf4 df4 v_across_r1 si kvl zener_voltage_regulator’
'fill equation_double_schema ef4 tT4 v_across_r1 s1 kvl zener_voltage_regulator'
'fill_units uf4 tf4 v_across_r1'

'complete function df4 tf4 uf4 efa V_i across rl'

"complete_kvl_schema_temp v_across_r1 kvl

'Fill_description df5 v_across_load'

‘fill type_single_schema tf5 dfs v_across_load s1 zener_voltage_regulator"
'fillequation_single_schema ef5 tf5 v_across_load si zener_voltage_regulator’
'Fillunits uf5 tf5 v_across_load'

cm’lplete function df5 tfs ufs efs v across_load'

'fill_description df6 current_thru

"R type sungle_schens (16 36 Current_thru_r s1 zener_voltage_regulator”
'fillequation_single_schema ef6 tf6 current_thru_r si zener_voltage_regulator'
'fill_units uf6é tf6 current_thru_r'

'complete_function dfé tf6 uf6 ef6 current_thru_r'
complete_zener_voltage_regulator_schema v_across_r1 v_across_load current_thru_r zener_voltage_regulator s1']

current explanation 3
['create_node current_thru_r'

'create_node v_across_load'

‘create_node v_across_r

'fil1l_description df4 v_across_r1'

‘111 type_double_schema tf4 df4 v_across_r1 s1 kvl zener_voltage_regulator'
‘111 equation_double_schema ef4 tfa v_across_r1 s1 kvl zener_voltage_regulator'
"fill_units uf4 tf4 v_across_r1'

‘complete_function dfd tf4 uf4 efd v_ scross.r1’

"complete_kvl_schema_temp v_across_r1 kvl s’

'Fil1_description df5 v_across_load'

‘Fi11 type_single_schema tfs df5 v_: across_load 1 zener_voltage_regulator’
'fill_description df6 current_thru]

“FILtype sunge_schena tf6 3f6 carrent_thru_ s1 zener voltage_regulator’

'fil1 equation_single_schema_expert ef6 tf6 s1 zener_voltage_regulator’
'fill_units ufé tfé current_thru_r'

‘complete function df6 tf6 uf6 ef6 current_thru_r'
"complete_zener_voltage_regulator_schema v_across_r1 v_across_load current_thru_r zener_voltage_regulator s1']

Figure 6: Different plans and associated model updates gen-
erated by the PEM(«) based on the a-hyperparameter. For
a high value of « the curriculum is of size 3 after which the
problem can be solved in 17 steps. With a lower value of «,
the problem can be solved with a longer 20 step plan.



Curriculum Size with Increasing Number of Students
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Figure 7: Group versus individual curriculum lengths with
increasing class size.
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Figure 8: Group versus individual curriculum lengths in dif-
ferent class configurations.
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