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Abstract
In order to be useful in the real world, an AI
agent needs to plan and act in the presence of
other agents, who may be helpful or disruptive. In
this paper, we consider the problem where an au-
tonomous agent needs to act in a manner that clar-
ifies its objectives to cooperative agents while pre-
venting adversarial agents from inferring those ob-
jectives. This problem is solvable when the agent
has access to the sensor models used by the coop-
erative and adversarial agents and access to their
prior knowledge. We develop two new solution ap-
proaches: one provides an optimal solution to the
problem given a fixed time horizon by using an
integer programming solver, the other provides a
satisficing solution using heuristic-guided forward
search to achieve prespecified amount of obfusca-
tion and legibility for adversarial and cooperative
agents respectively. We show the feasibility and
utility of our algorithms through extensive empir-
ical evaluation on planning benchmarks.

1 Introduction
In a multi-agent environment, the activities performed by an
agent may be observed by other agents. In such an environ-
ment, an agent should perform its tasks while taking into ac-
count the observers’ sensing capabilities and its relationship
with the observers. Several prior works have explored the
generation of legible agent behavior in the presence of coop-
erative observers [Dragan and Srinivasa, 2013; Zhang et al.,
2017; MacNally et al., 2018] and obfuscating agent behavior
in the presence of adversarial observers [Keren et al., 2016b;
Masters and Sardina, 2017b; Shekhar and Brafman, 2018;
Kulkarni et al., 2019]. Through legible behavior, an agent can
convey the necessary information to a cooperative observer,
while through obfuscating behavior it can hide sensitive in-
formation from an adversary. However, these prior works as-
sume that the observers in the environment are either entirely
cooperative or entirely adversarial.

In real-world settings of strategic importance, an agent
might encounter both types of observers simultaneously. This
would necessitate synthesizing a behavior that is simultane-
ously legible to friendly entities and obfuscatory to adversar-
ial ones. For instance, in soccer, a player may perform feint-
ing trick to confuse an opponent while signaling a teammate.
Synthesizing a single behavior that is legible and obfuscatory

to different agents presents significant technical challenges.
In particular, the agent may have to be deliberately less legi-
ble to its friends so that it can be effectively more obfuscatory
to its adversaries. This problem gives rise to a novel optimiza-
tion space that involves trading-off the amount of obfuscation
desired for adversaries with the amount of legibility desired
for friends.

In this paper, we present a novel problem framework called
mixed-observer controlled observability planning problem,
MO-COPP, that allows an agent to simultaneously control
information yielded to both cooperative and adversarial ob-
servers while achieving its goal. Our framework models and
exploits situations where different observers have differing
sensing capabilities, which result in different “perceptions” of
the same information. Typically, different observers in an en-
vironment may have different “sensors” (perception capabil-
ities) due to differences in prior communication, background
knowledge, and raw sensor hardware. For example, an agent
may establish semaphore actions that are more meaningful to
its allies than to its adversaries. Therefore, we assume that
different types of observers have differing sensor models.

We propose two approaches to solve MO-COPP. (1) A
novel integer programming (IP) encoding, which provides
an optimal solution given a fixed time horizon. This in-
volves maximizing the amount of trade-off between obfusca-
tion achieved for adversarial observer and legibility achieved
for cooperative observer with respect to the agent’s objec-
tives. (2) A heuristic-guided search algorithm, which lever-
ages a prior approach [Kulkarni et al., 2019] that was de-
signed to address entirely cooperative or entirely adversar-
ial settings. Through theoretical and empirical analysis, we
explore the strengths of the two proposed approaches. Ad-
ditionally, we show that for mixed-observer setting, our so-
lution approaches add significant value over approaches that
consider either entirely cooperative or adversarial observers.
Motivating Example Consider the example in Figure 1,
where a truck agent has to deliver two packages. As shown
in Figure 1a, there are two packages at factory A and two at
factory B. Let there be two observers who know the initial
inventory at each factory, but do not know which two pack-
ages will be delivered by the agent. Each observer has dif-
ferent sensors (or sources of information) about the truck’s
activities. Observer-C (cooperative observer) has access to a
database of barcodes which allows it to determine the identity
of the factory that the package was loaded from (but not the



(a) The actor’s goal is to deliver two packages to the delivery area:

(b) Plan-1 - Actor delivers 1 package from factory A and 1 from B:

(c) Plan-2 - Actor delivers both the packages from factory A, helping
observer-C and thwarting observer-X:

Figure 1: Different belief updates induced by the same plan for two
observers; observer-C is cooperative, observer-X is adversarial.

identity of the individual packages), whereas observer-X (ad-
versarial observer) does not have any additional information
and cannot differentiate between any of the packages. The
truck agent wants to convey its true goal to observer-C but
obfuscate it to observer-X. When the agent loads one package
each from A and B (Figure 1b), observer-C cannot distinguish
the packages. However, when it loads both the packages from
A (Figure 1c), observer-C can infer the identity of the loaded
packages, while observer-X still does not know the identity
of the packages. Therefore, plan-2 makes the true goal legi-
ble to observer-C while obfuscating the true goal with all the
possible goals for observer-X.
2 MO-COPP
MO-COPP setting involves an actor (A) and two observers,
where one is adversarial observer (X) while the other is co-
operative (C). We assume that the actor has full observabil-
ity of its own activities and knows the sensor models used
by the observers, and that the observers have different sensor
models.1 When the actor takes an action and reaches a new
state, each observer receives an observation. After obtaining
the observations, each observer updates its belief. The actor
leverages the known limits in the observers’ sensors to control
the observability of multiple observers in the environment si-
multaneously. Given a set of candidate goals, the objective of
the actor is to convey information about its goal to the coop-
erative observer and to hide it from the adversarial observer.
This involves increasing the number of candidate goals possi-
ble in the adversary’s belief, while decreasing the number of
candidate goals possible in cooperative observer’s belief.

1If the actor does not have access to the sensor models of the
observers or both the observers have the same sensor model, then
there is of course no question of balancing obfuscation and legibility.

Definition 1. A mixed-observer controlled observ-
ability planning problem is a tuple, MO-COPP =
〈Λ,P,G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉, where,

• Λ = {A,C,X} is the set of agents.
• P = 〈F ,Op, I, GA〉 is A’s task captured as a classical

planning problem [Geffner and Bonet, 2013], where F
is the set of fluents, Op is the set of actions, I is the
initial state and goal GA is a subset of fluents. Also, for
a ∈ Op, pre(a), add(a), delete(a) are each a subset of
fluents representing precondition, add effects and delete
effects of a.
• G = {G1, G2, . . . , Gn−1, GA} is the set of candidate

goals, where GA is the true goal of A, which is not
known to both C and X.
• Ωi is the set of observation symbols for agent i, which

are emitted when A takes an action and reaches a new
state. Further, ΩA = {oAa,s|a ∈ Op, s ∈ S}.
• Oi : Op × S → Ωi is agent i’s deterministic sensor

model. S is the set of states, where each state is instan-
tiation of all fluents. Further, OA maps each action-
state pair to a unique observation, ∀ a, a′ ∈ Op, s, s′ ∈
S, a 6= a′ ∧ s 6= s′ : OA(a, s) 6= OA(a′, s′), while
OX and OC are noisy sensor models that map multiple
action-state pairs to the same observation symbol.
• Bi0 is the initial belief of an observer, i ∈ {X,C}. The

initial belief is a set of states inclusive of I.
From the above definition, we see that, while X and C can

have arbitrary sensor models with partial observability, A has
full observability, due to one-to-one mapping of the sensor
model. The observers are aware of the planning domain of
the actor and of the candidate goals, except they do not know
which candidate goal is the actor’s true goal, GA.

Every time the actor acts, each i ∈ Λ receives an obser-
vation consistent with its sensor model. The sensor model of
an observer i ∈ {X,C} supports many-to-one mapping of
〈a, s〉 pairs to observation symbols, i.e., ∃a, a′ ∈ Op, s, s′ ∈
S, a 6= a′ ∧ s 6= s′ : Oi(a, s) = Oi(a′, s′).2 For an
agent i, the inverse of sensor model gives the set of 〈a, s〉
pairs consistent with an observation symbol oi ∈ Ωi, i.e.,
O−1
i (oi) = {〈a, s〉|∀a ∈ Op, s ∈ S,Oi(a, s) = oi}.
Each observer i ∈ {X,C} maintains its own belief, which

is a set of states. Γ(·) is a transition function, such that,
Γ(s, a) = ⊥ if s 6|= pre(a); else Γ(s, a) = s ∪ add(a) \
delete(a). Now we can define the belief update: (1) at time
step t = 0, the initial belief of observer i is given by Bi0, (2)
at time step t ∈ {1, . . . , T }, Bit = {ŝ | ∃â, s̄ Γ(s̄, â) =
ŝ; s̄ ∈ Bit−1;Oi(â, ŝ) = oit}, where T is the time hori-
zon. That is, the belief is updated using the previous be-
lief and the observation received. A plan π (or sequence
of actions) is associated with a sequence of observations,
ObsSeqi(π) = {oi1, . . . , oiT } for each observer i. The belief
of A is a single state due to full observability.
MO-COPP Solutions A plan π solves a MO-COPP = 〈Λ,P,
G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉, iff: Γ(I, π) |= GA.

2Our formulation supports sensor models that yield no observa-
tions. This can be modeled by using a dummy observation symbol
that essentially maps to all the possible 〈a, s〉 pairs.



In other words, any solution to P is a solution to MO-COPP.
We measure the quality of a MO-COPP solution in terms of
the extent to which the plan is legible to C and obfuscat-
ing to X. Given a solution plan, π, let GπX = {G ∈ G :
∃s ∈ BX

T , s |= G}, denote the goals present in X’s final
belief and GπC = {G ∈ G : ∃s ∈ BC

T , s |= G}, denote
the goals present in C’s final belief. Also, we can define
the inverse of its observation sequence for observer i, as fol-
lows: ∀i ∈ {X,C}, ObsSeq−1

i (π) = {π̂|∃si0 ∈ Bi0, G ∈
Gπi ,Γ(si0, π̂) |= G,ObsSeqi(π) = ObsSeqi(π̂)}.

Here |GπX| represents the amount of goal obfuscation for
X, and by increasing the number of goals in GπX, we can in-
crease the goal obfuscation. Similarly, |GπC| represents the
amount of goal legibility for C, and by decreasing the num-
ber of goals in GπC, we can increase the goal legibility. We
now introduce a goal difference metric to estimate the quality
of a solution plan to MO-COPP.

Definition 2. Given a solution plan π that solves MO-COPP,
where |G| = n, the goal difference, of π is given by:
GD(π) =

|GπX|−|G
π
C|

n−1 where the denominator represents the
difference between ideal values of GπX and GπC.

An optimal solution to MO-COPP maximizes the trade-off
between amount of goal obfuscation and goal legibility. That
is, it maximizes the difference between the number of goals
in GπX and GπC. Equivalently, closer the GD(π) value to 1,
better is the plan quality. A solution plan with GD(π) = 1 is
an optimal plan. E.g., in Figure 1c, plan-2 is an optimal plan
with GD(plan-2) = 6−1

6−1 = 1. The denominator is essential
for comparing the quality of plans across different problems,
with varying number of candidate goals.

Proposition 1. Given a solution plan, π, to MO-COPP, if
|GπC| = 1, then GA ∈ GπC.

The above proposition states that when maximum goal leg-
ibility is achieved, only one goal GA is present in C’s final
belief. This is because I ∈ BC0 , and while performing belief
update at t, 〈at, st〉 ∈ O−1

C (oCt ). That is the true state is part
of each belief update. Therefore, GA ∈ GπC.

3 Plan Computation
We now present two solution approaches. In the first ap-
proach, we formulate MO-COPP as a constraint optimization
problem and provide an IP encoding to solve it in T steps.
The IP encoding provides an optimal solution for the given
horizon by maximizing the trade-off between the amount of
obfuscation and legibility. In the second approach, we use
a heuristic-guided forward search to achieve preset levels of
goal obfuscation and legibility. The search algorithm gener-
ates solutions that satisfy a prespecified lower bound on the
amount of goal obfuscation and goal legibility.
3.1 MO-COPP as Integer Program
Variables We require the following binary variables for
our encoding: xa,t is an indicator variable for action a at time
t, ys,t is an indicator variable for state s at time t, wio,t is an
indicator variable for observation oi at time t, bis,t is an in-
dicator variable for state s in belief Bi at time t, his,a,t is an
indicator variable for action a being applicable in state s in

belief Bi at time t and giG,T is an indicator variable for a goal
G present in belief BiT .
Objective Function The objective function is
essentially the numerator of GD(·) metric, i.e.,
max

∑
G∈G gXG,T −

∑
G∈G gCG,T . We skip the de-

nominator of the GD metric, as it is a constant and does
not contribute to the optimization. This provides a single
solution that achieves the maximum difference between the
number of goals possible for the two observers. Note that, it
would make sense to get the Pareto optimal solutions if we
wanted to explore all the combinations of goals achieved for
the two observers. However, that is not our objective.
IP Constraints
∀s ∈ S, s = I : ys,0 = 1; s 6= I : ys,0 = 0;

∑
GA∈ s

ys,T = 1 (1)

∀i ∈ {X,C}, s ∈ S, s ∈ Bi0 : b
i
s,0 = 1; s 6∈ Bi0 : b

i
s,0 = 0 (2)

∀i ∈ {X,C}, G ∈ G,m > |{s|G ∈ s}| : m ∗ giG,T −
∑
G ∈ s

b
i
s,T > 0

(3)

∀a ∈ Op, t ∈ {1, . . . , T }, prea = {s | pre(a) ∈ s} :

xa,t 6
∑

s∈prea

ys,t−1 (4)

∀s, s′ ∈ S, t ∈ {1, . . . , T }, adds′ = {a|pre(a) ∈ s, add(a) \ delete(a) ∈ s′},

pres′ = {s| pre(a) ∈ s ∧ add(a) \ delete(a) ∈ s′} :∑
a∈add

s′

xa,t +
∑

s∈pre
s′

ys,t−1 − 2 ys′,t > 0 (5)

∀a ∈ Op, t ∈ {1, . . . , T }, posta = {s′ | add(a) \ delete(a) ∈ s′} :∑
s∈prea,s′∈posta

ys,t−1 ys′,t = xa,t (6)

∀i ∈ {X,C}, o ∈ Ωi, t ∈ {1, . . . , T } : w
i
o,t =

∑
a,s′∈Oio

xa,t ys′,t (7)

∀i ∈ {X,C}, s ∈ S, t ∈ {1, . . . , T }, a ∈ adds,

adds = {a| pre(a) ∈ s} : b
i
s,t−1 + w

i
o,t − h

i
s,a,t 6 1 (8)

∀i ∈ {X,C}, s ∈ S, o ∈ Ωi, t ∈ {1, . . . , T }, a ∈ adds,

adds = {a| pre(a) ∈ s} : h
i
s,a,t − b

i
s,t−1 6 0 (9)

∀i ∈ {X,C}, s ∈ S, t ∈ {1, . . . , T }, a ∈ adds, s′ ∈ posts
adds = {a| pre(a) ∈ s}, posts = {s′| add(a) \ delete(a) ∈ s′} :

h
i
s,a,t − b

i
s′,t 6 0 (10)

∀i ∈ {X,C}, s ∈ S, o ∈ Ωi, t ∈ {1, . . . , T }, a ∈ adds,

adds = {a| pre(a) ∈ s} : h
i
s,a,t − w

i
o,t 6 0 (11)

∀i ∈ {X,C}, s, s′ ∈ S, t ∈ {1, . . . , T },

adds′ = {a| pre(a) ∈ s ∧ add(a) \ delete(a) ∈ s′},

pres′ = {s| pre(a) ∈ s ∧ add(a) \ delete(a) ∈ s′} :∑
s∈pre

s′ ,a∈adds′

h
i
s,a,t − b

i
s′,t > 0 (12)

∀t ∈ {1, . . . , T } :
∑
a∈Op

xa,t 6 1 (13)

Constraint (1) sets the initial state and says that a state that
satisfies the true goal should be achieved in the last time step
for A. Constraint (2) sets the initial belief for both the ob-
servers. Constraint (3) says that if a goal is satisfied in the fi-
nal belief of an observer then the corresponding goal variable
will be true. Constraint (4) through (6) enforce the transition
function. Specifically, constraint (4) validates the applicabil-
ity of an action in a state, constraint (5) states that for a result-
ing state to be true both the action and the state in which it is



applied should be true, and similarly constraint (6) validates
an action with respect to its previous state and the resulting
state. Constraint (7) enforces the corresponding observation
symbol for each observer depending on the 〈a, s′〉 pair. Con-
straints (8) through (12) enforce a belief update. Specifically,
constraint (8) states that an action is not applicable in a be-
lief state if either the belief state or the observation is untrue.
Constraint (9) states that an action cannot be applied in a be-
lief state that is untrue. Constraint (10) states that an action
cannot be true if the resulting belief state is untrue. Constraint
(11) states that an action cannot be true if the corresponding
observation is untrue. Constraint (12) states that a belief state
is true if the sum of actions leading to it is at least 1. Con-
straint (13) ensures only one action is possible at each step.
Proposition 2. The IP encoding listed above which
takes time horizon T as input, solves a MO-COPP =
〈Λ,P,G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉 such that, the
following properties hold:
• Soundness: A solution to the IP will solve MO-COPP.
• Completeness: If there exists a plan that solves the

MO-COPP in T time steps, then it will be a feasible solu-
tion for the IP encoding.
• Optimality: An optimal solution to the IP encoding will

be a plan that solves the MO-COPP with an optimal value
of GD given the time horizon, T .

Since a solution to the IP, πIP , satisfies (1), it solves
MO-COPP. If there exists a plan πT of T time steps that
solves MO-COPP, Γ(I, πT ) |= GA, then πT will satisfy the
constraints (1), (4)-(6) and (13). The IP encoding uses the
numerator of GD metric as its objective function. An opti-
mal solution to the IP encoding, π∗IP , is an optimal plan to
MO-COPP given plans of T time steps.
Goal Constraints The objective function trades off goal
obfuscation with goal legibility for the observers. How-
ever, the actor can ensure a predefined level of goal obfus-
cation (say obfuscate with at least k candidate goals) by∑
G∈G g

X
G,T > k, s.t. 1 6 k 6 |G| and goal legibility (say

legible with at most j goals) by
∑
G∈G g

C
G,T 6 j, s.t. 1 6

j 6 |G|. These constraints allow the actor to filter out solu-
tions that do not satisfy minimum bound for goal obfuscation
and goal legibility. The actor can improve the robustness of
the plans generated by using these constraints.
3.2 Search Algorithm
In this section, we show that it is possible to leverage search
techniques that address goal obfuscation and goal legibility in
isolation to solve MO-COPP. We adapt Kulkarni et al. [2019]
approach to address goal obfuscation and goal legibility si-
multaneously to two different observers. We specify bounds
on the amount of goal obfuscation and goal legibility desired,
similar to the ones seen in the IP: obfuscate with at least k
goals, make it legible with at most j goals. These bounds,
Φ = 〈ΦX,ΦC〉, are given as input to the search algorithm.

Each search node maintains the associated beliefs for both
observers. The approx function generates an approximate
belief, bi∆, of size ∆ (i.e. cardinality of bi∆ is ∆). bi∆ is al-
ways inclusive of the true state of the actor, this is because
the actor can only take actions that are consistent with its true
state. If all such ∆−sized beliefs are explored then bi∆ of

Algorithm 1 Heuristic-Guided Search
1: Initialize open, closed and temp lists; ∆ = 1

2: 〈bX∆ , b
C
∆〉 ← approx(I,BX0 ,B

C
0 )

3: open.push(I, 〈bX∆ , b
C
∆〉, 〈B

X
0 ,B

C
0 〉, priority = 0)

4: while ∆ 6 |S| do
5: while open 6= ∅ do
6: s, 〈bX∆ , b

C
∆〉, 〈B

X ,BC〉, hnode ← open.pop()

7: if |bX∆ | > ∆ or |bC∆| > ∆ then
8: temp.push(s, 〈bX∆ , b

C
∆〉, 〈B

X ,BC〉, hnode)
9: continue

10: end if
11: add 〈bX∆ , b

C
∆〉 to closed

12: if s |= GA and BX |= ΦX and BC |= ΦC then
13: return π,ObsSeqX(π), ObsSeqC(π)
14: end if
15: for s′ ∈successors(s) do
16: oX ← OX(a, s′); oC ← OC(a, s′)

17: B̂X = Update(BX , oX); B̂C = Update(BC , oC)

18: 〈b̂X∆ , b̂C∆〉 ← approx(s′, B̂X , B̂C)

19: hnode ← hGA (s′) + hGk−1
(B̂X)− hGG−j (B̂C)

20: add new node to open if 〈b̂X∆ , b̂C∆〉 not in closed
21: end for
22: end while
23: increment ∆; copy items from temp to open; empty temp

24: end while

∆ + 1 size is computed, and this node gets put in the tempo-
rary list and is explored in the next outer iteration when ∆ has
been incremented. For each ∆, all ∆-sized unique combina-
tions of belief (that include the actual state of the actor) are
explored. This allows systematic and complete exploration
of multiple paths to a given search node. The inner iteration
performs heuristic guided forward search (we use greedy best
first search) to find a plan while tracking at most ∆ states in
each bi∆. In the inner loop, the node expansion is guided by
(1) customized heuristic function, which computes value of
the node based on true goal and belief constraints given by
Φ for the observers, and (2) goal test, which checks for sat-
isfaction of true goal and satisfaction of the belief constraints
given by Φ. The algorithm stops either when a solution is
found or when all the ∆ iterations have been explored.

Proposition 3. The search algorithm listed above which
takes goal-constraints Φ as input, solves a MO-COPP =
〈Λ,P, G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉 such that, the
following properties hold:

• Soundness Any solution to the search algorithm is a
plan that solves the MO-COPP.

• Completeness If there exists a plan that solves MO-COPP
given goal-constraints Φ, it will be found by the search.

A solution to the search algorithm solves MO-COPP, since
the goal test ensures the true state of A satisfies GA. The
search algorithm necessarily terminates in |S| iterations of the
∆ parameter. The ∆ parameter allows systematic exploration
of unique ∆-sized combinations of belief, starting with ∆ =
1 until a solution is found or the solution space is explored,
∆ = |S|. The goal test checks for satisfaction of constraints
in Φ. Hence, a plan that solves MO-COPP given Φ will be
found by the search algorithm.
Property In both the solution approaches, we can assert a
lower bound on the extent of goal obfuscation and goal leg-
ibility for a MO-COPP solution plan. In IP, we can specify
the aforementioned goal constraints to assert this minimum



value, while in the search, the goal tests allow us to assert it.
By setting k, j to desired values, we can eliminate solutions
with low GD score. This affords the following guarantee:

Proposition 4. Let X and C be perfectly rational adversarial
and cooperative observers respectively. Given a MO-COPP
= 〈Λ,P,G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉 with equally
probably goals, |G| = n, and goal constraints of at least k
goal obfuscation for X and at most j goal legibility for C,
then a solution plan, π, gives the following guarantees:

1. X can infer GA with probability 6 1/k,

2. C can infer GA with probability > 1/j, and

3. Goal difference metric, GD(π) > k−j
n−1

Given |GπX| > k, X can infer GA with probability 6 1/k.
Similarly, given |GπC| 6 j, C can inferGA with probability >
1/j. Also, similarly, GD(π) > k−j

n−1 . The above proposition
states that, based on the observation equivalence there is no
additional information revealed about the actor’s true goal.
Therefore, we can derive goal detection upper bound for X
and lower bound for C. Also this allows us to derive a lower
bound on the plan quality.

4 Empirical Evaluation
In this section, we evaluate the performance of our ap-
proaches against a baseline and discuss the relative strengths
of both the approaches using 6 domains. We also compare the
quality of the solutions generated by our approach against an
approach that assumes either entirely adversarial or entirely
cooperative observers.
Domains For the evaluation, we look at 6 domains: Grid-
world, Box Pushing, Recycling Robot, Blocksworld, Logis-
tics and Driverlog. In Gridworld, the actor can move in car-
dinal directions. OX, consists of two observations, vertical
for movement along N or S and horizontal otherwise. OC

consists of symbols, north-east for N or E and south-west
otherwise. In Box Pushing [Kube and Zhang, 1997], the ac-
tor’s goal is to face the box and push it to the topmost row.
The actions available are: move-forward, stay, turn-left, turn-
right. OX consists of two symbols, turn when the agent per-
forms turning actions and move, otherwise. OC consists of
move-right when turning right or moving and leftwards oth-
erwise. In Recycling Robot [Sutton and Barto, 2018], the
actor’s objective is to collect cans and put them in recycling
bins. The actions available are: N, S, E, W, pick-up, drop,
charge, stay. OX consists of four symbols, horizontal when
moving E or W, vertical when moving N or S, using-gripper
when picking or dropping and charging otherwise. OC con-
sists of north-east, south-west, charging-picking, and staying-
dropping. For the three IPC domains, we use the lifted action
names as observations for adversarial observer and lifted ac-
tion names with objects as observations for cooperative ob-
server. For example, given Blocksworld with 4 blocks a, b,
c, d, for C, we can have stack-a-b to represent stacking of a
or b on any other block and similarly stack-c-d. This is done
for all the lifted actions. We produced similar observations
for Logistics and Driverlog. In modeling the observations,
we use the notion that in realistic scenarios, it’s likely that
the actor may provide the ally with tools/information to infer
observations more clearly.

We implemented our IP encoding using Gurobi optimizer
[Gurobi Optimization, 2018]. We implemented the heuristic-
guided search using the STRIPS planner Pyperplan [Alk-
hazraji et al., 2016] with hsa [Keyder and Geffner, 2008]
heuristic. We used hsa heuristic because it gave better perfor-
mance. For baseline planner, we used greedy best first search
with hsa heuristic. We ran our experiments on 3.5 GHz Intel
Core i7 processor with 16 GB RAM. We used Gridworld of
size 8x8, Box Pushing of size 5x5 with a single box, Recy-
cling Robot of size 4x4 with a can and battery of 5 levels,
Blocksworld with 5 blocks, and Logistics and Driverlog had
goals with 4 facts each. For each domain, we generated 30
problems with random initial state goals. For the first 3 do-
mains, we created 3 goals per problem, and for the next 3
domains, 5 goals per problem.
Relative Strengths We report the averages and standard
deviation of GD, plan length and time taken for baseline, IP
and search algorithm in Figure 2. For the baseline, we com-
puted plans considering only GA. For the IP, we set the plan
horizon to 12 for Gridworld, 12 for Box-Pushing and 10 for
Recycling-Robot. If solutions were not found for that hori-
zon, we incremented the horizon by 2. The IP did not run
for the complex IPC domains, so we only display results for
the first three domains. For the search, we set the minimum
number of goals for X to 2 (at least 2 goals), and maximum
number of goals for C to 2 (at most 2 goals). For all three al-
gorithms, the GD is calculated by counting the total number
of goals present in the observers’ beliefs. We tested for sta-
tistical significance of the results by performing independent
measures ANOVA to reject the null hypothesis that the three
algorithms are the same and that the differences are due to
any randomness in the experiments (e.g., the randomly cho-
sen goals). For Gridworld, we found that the p-value is less
than 0.00001 for GD, as well as for plan length and run time
considering the results of all 3 algorithms. This is true for
Box-Pushing and for Recycling-Robot as well. All the results
are significant at p < 0.05.

The IP approach has several advantages. Firstly, it pro-
duces optimal solutions given a time horizon for the MO-
COPP problem. Secondly, it provides a lot of flexibility: it
automatically chooses the best candidate goals to be added to
or removed from the final beliefs of the observers. Also, if
we want to specifically add or remove a particular goal from
the observer’s final belief, it is easy to add the necessary con-
straint. These advantages were evident in the results: IP has
higher GD for all the 3 domains. On the other hand, the
search algorithm is faster and generates satisficing solutions
that meet the goal constraints: the average time for search
is consistently lower than IP for all the domains. Also the
search solutions are shorter in length than those of the IP. The
baseline although fastest (satisficing solution to a single goal)
produces worst plan quality (GD). Additionally, the search
can run more complex problems. The average and standard
deviation GD for the IPC domains is reported in Figure 3.
Comparison Against Other Approaches Here, we report
the GD metric for IPC domains and show the relative per-
formance of our algorithm against approaches that assume
entirely adversarial or entirely cooperative observers using
IPC domains. We used k-ambiguous and j-legible algorithms
from [Kulkarni et al., 2019] for achieving obfuscation and
legibility in isolation as baseline. We compute the GDs for



Figure 2: Comparison of average and standard deviation for goal difference (GD), plan length and run time using a baseline planner, IP
planner and heuristic-guided planner over three domains.

Figure 3: (a) Table shows the average and standard deviation GD for
IPC domains. (b) Graph shows relative GD between our algorithm
and approaches that achieve obfuscation/legibility in isolation.

the baseline goal obfuscation and goal legibility by allowing
minimum constraint for the other case. That is, when running
goal obfuscation algorithm, the minimum constraint is to be
legible with respect to at most 5 goals. Similarly, when using
goal legibility algorithm, the minimum constraint is to be ob-
fuscating with respect to at least 1 goal. We set a timeout of
20 minutes, and altogether 7 problems timed out (3 from Lo-
gistics, 4 from Driverlog) out of 90 problems. Here we set k
and j values to 3. In Figure 3, we report the relative GD per-
centages for solutions that achieve goal obfuscation and goal
legibility in isolation with respect toGD of the solutions pro-
duced by our algorithm. The GD is computed by counting
the number of goals in each observer’s belief.

From Figure 3, we can see that, our approach consistently
outperforms the obfuscation and legibility algorithms with re-
spect to the plan quality of the solutions (GD). This is be-
cause, as stated in Proposition 4, our approach makes sure
that each solution achieves a minimum amount of GD. In
this case, the minimum is 0 (since k and j values are set to
3). This ensures that our search algorithm does not output so-
lutions with GD < 0, which was not the case for the other
two approaches, as is seen from the relative GD percentages.
This evaluation shows that the existing approaches that ad-
dress obfuscation and legibility in isolation are not sufficient
to produce good quality solutions to MO-COPP.

5 Related Work
This work is related to the plan recognition literature as the
observers can use the observations to perform goal recogni-
tion. There are several prior works on goal/plan recognition
[Ramırez and Geffner, 2009; Ramırez and Geffner, 2010; E-
Martin et al., 2015; Sohrabi et al., 2016; Pereira et al., 2017;
Masters and Sardina, 2017a]. However, the following two

characteristics of our approach would not allow these goal
recognition approaches to accurately rank goals: (1) our ap-
proach does not restrict the actor to optimal solutions (2) the
observation equivalence in the many-to-one mapping of the
observations does not provide additional information about
〈a, s〉 pairs. The aforementioned recognition systems as-
sume 1-to-1 mapping of observations to actions or states. In
our framework, given the observation sequence there exists a
valid plan to each of the goals in observer’s final belief. This
would throw off the goal recognition systems. In our frame-
work, in the adversarial case, the set of possible goals in the
observer’s final belief does not reveal information about the
actor’s true goal, whereas, in the cooperative case, this set is
indeed what the actor wants to convey to the observer.

Our framework not only accommodates both adversarial
and cooperative agents but also tackles them simultaneously.
However, several prior works have explored planning in ad-
versarial environments [Keren et al., 2016b; Keren et al.,
2016a; Masters and Sardina, 2017b; Shekhar and Brafman,
2018; Pozanco et al., 2018; Kulkarni et al., 2019] in isola-
tion and also in cooperative environments [Keren et al., 2014;
Zhang et al., 2017; Chakraborti et al., 2017; Chakraborti et
al., 2016; MacNally et al., 2018] in isolation. There are a
few frameworks [Keren et al., 2014; Kulkarni et al., 2019]
that are general enough to address both adversarial and co-
operative settings in the same framework. However these
still look at each setting in isolation in contrast to our frame-
work. Additionally, we generalize the controlled observabil-
ity planning problem [Kulkarni et al., 2019] by manipulating
the observations received by both adversarial and coopera-
tive observers simultaneously. Figure 3 shows that our ap-
proaches significantly outperform Kulkarni et al. [2019] in
settings with mixed adversarial and cooperative observers.

6 Conclusion
We present the MO-COPP formulation which is a more gen-
eral framework for controlled observability planning prob-
lem. MO-COPP can tackle both adversarial and coopera-
tive observers simultaneously. We provide two solution ap-
proaches: (1) we formulate the problem as a constraint opti-
mization problem and show that the MO-COPP can be solved
optimally given the time horizon by maximizing goal obfus-
cation and maximizing goal legibility simultaneously to sep-
arate observers, (2) we show that it is possible to leverage
frameworks that tackle obfuscation and legibility in isolation
to compute satisficing solutions to MO-COPP. We evaluate
both of our approaches using 6 domains in total.
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Geffner. Heuristics for planning with action costs
revisited. In ECAI, pages 588–592, 2008.

[Kube and Zhang, 1997] C Ronald Kube and Hong Zhang.
Task modelling in collective robotics. Autonomous Robots,
4(1):53–72, 1997.

[Kulkarni et al., 2019] Anagha Kulkarni, Siddharth Srivas-
tava, and Subbarao Kambhampati. A unified framework
for planning in adversarial and cooperative environments.
In AAAI, 2019.

[MacNally et al., 2018] Aleck M MacNally, Nir Lipovetzky,
Miquel Ramirez, and Adrian R Pearce. Action selection
for transparent planning. In Proceedings of the 17th Inter-
national Conference on Autonomous Agents and MultiA-
gent Systems, pages 1327–1335. International Foundation
for Autonomous Agents and Multiagent Systems, 2018.

[Masters and Sardina, 2017a] Peta Masters and Sebastian
Sardina. Cost-based goal recognition for path-planning.
In Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’17, pages 750–
758, Richland, SC, 2017. International Foundation for Au-
tonomous Agents and Multiagent Systems.

[Masters and Sardina, 2017b] Peta Masters and Sebastian
Sardina. Deceptive path-planning. In Proceedings of the
Twenty-Sixth International Joint Conference on Artificial
Intelligence, IJCAI-17, pages 4368–4375, 2017.

[Pereira et al., 2017] Ramon Fraga Pereira, Nir Oren, and
Felipe Meneguzzi. Landmark-based heuristics for goal
recognition. In Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[Pozanco et al., 2018] Alberto Pozanco, Yolanda E-Martı́n,
Susana Fernández, and Daniel Borrajo. Counterplanning
using goal recognition and landmarks. In Proceedings of
the Twenty-Seventh International Joint Conference on Ar-
tificial Intelligence, IJCAI-18, pages 4808–4814. Interna-
tional Joint Conferences on Artificial Intelligence Organi-
zation, 7 2018.

[Ramırez and Geffner, 2009] Miquel Ramırez and Hector
Geffner. Plan recognition as planning. In Proceedings
of the 21st international joint conference on Artifical intel-
ligence. Morgan Kaufmann Publishers Inc, pages 1778–
1783, 2009.

[Ramırez and Geffner, 2010] Miquel Ramırez and Hector
Geffner. Probabilistic plan recognition using off-the-shelf
classical planners. In Proceedings of the Conference of the
Association for the Advancement of Artificial Intelligence
(AAAI 2010), 2010.

[Shekhar and Brafman, 2018] Shashank Shekhar and Ro-
nen I Brafman. Representing and planning with interacting
actions and privacy. In Twenty-Eighth International Con-
ference on Automated Planning and Scheduling, 2018.

[Sohrabi et al., 2016] Shirin Sohrabi, Anton V Riabov, and
Octavian Udrea. Plan recognition as planning revisited. In
IJCAI, pages 3258–3264, 2016.

[Sutton and Barto, 2018] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[Zhang et al., 2017] Yu Zhang, Sarath Sreedharan, Anagha
Kulkarni, Tathagata Chakraborti, Hankz H Zhuo, and Sub-
barao Kambhampati. Plan explicability and predictability
for robot task planning. In International Conference on
Robotics and Automation (ICRA), 2017.


	Introduction
	mo-copp
	Plan Computation
	mo-copp as Integer Program
	Search Algorithm

	Empirical Evaluation
	Related Work
	Conclusion

