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Abstract. Present attack methods can make state-of-the-art classifica-
tion systems based on deep neural networks mis-classify every adver-
sarially modified test example. The design of general defense strategies
against a wide range of such attacks still remains a challenging prob-
lem. In this paper, we draw inspiration from the fields of cybersecurity
and multi-agent systems and propose to leverage the concept of Moving
Target Defense (MTD) in designing a meta-defense for ‘boosting’ the
robustness of an ensemble of deep neural networks (DNNs) for visual
classification tasks against such adversarial attacks. To classify an input
image, a trained network is picked randomly from this set of networks by
formulating the interaction between a Defender (who hosts the classifica-
tion networks) and their (Legitimate and Malicious) users as a Bayesian
Stackelberg Game (BSG). We empirically show that this approach, MT-
Deep, reduces misclassification on perturbed images in various datasets
such as MNIST, FashionMNIST, and ImageNet while maintaining high
classification accuracy on legitimate test images. We then demonstrate
that our framework, being the first meta-defense technique, can be used
in conjunction with any existing defense mechanism to provide more
resilience against adversarial attacks that can be afforded by these de-
fense mechanisms. Lastly, to quantify the increase in robustness of an
ensemble-based classification system when we use MTDeep, we analyze
the properties of a set of DNNs and introduce the concept of differential
immunity that formalizes the notion of attack transferability.

1 Introduction

State-of-the-art systems for image classification based on Deep Neural Networks
(DNNs) are used in many important tasks such as recognizing handwritten dig-
its on cheques [17], object classification for automated surveillance [16] and au-
tonomous vehicles [10]. Adversarial attacks to make these classification systems
misclassify inputs can lead to dire consequences. For example, in [24], road signs
saying ‘stop’ are misclassified, which can make an autonomous vehicle behave
dangerously. Such attack mechanisms also exist for state-of-the-art vision sys-
tems that recognize faces, which may be used for authentication, target identifi-
cation etc. as shown in [30]. Moreover, one desires these adversarially generated
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images to be indistinguishable wrt the original image when evaluated from the
perspective of a human classifier. Thus, if D̂(i) denotes the class of an image i

output by a Deep Neural Network D̂, an adversarial perturbation ε when added
to the image i tries to ensure that D̂(i) 6= D̂(i + ε). In addition, attackers try
to minimize some norm of ε, which ensures that the changed image i + ε and
the original image i are indistinguishable to humans. The effectiveness of an at-
tack method is measured by the accuracy of a classifier on the perturbed images
generated by it.

Defenses against adversarial examples are designed to be effective against a
certain class of attacks by either training the classifier with perturbed images
generated by these attacks or making it hard for these attacks to modify some
property of the neural network. Unfortunately, this has evolved into a cat-and-
mouse game and often, a state-of-the-art defense mechanism is proved to be
inadequate against a new class of attacks almost as soon as it is published. Some
recent works try to formulate the attack scenario as a min-max adversarial game
where the defender tries to minimize the loss while the attacker tries to maximize
it. They show the use of Projected Gradient Descent (PGD) for solving the inner
(max) optimization can result in attacks that are extremely effective in crippling
the classification system and, at the same time, capture the characteristics of
many of state-of-the art attacks [20]. They claim that robust training methods
that enforce classification to the same class when images are ε distance away
from any image in the training set results in high classification accuracy against
adversarial examples. Unfortunately, this has the side effect of bringing down
the classification accuracy on non-perturbed examples.

In this paper, we take a different view and try to design a meta-defense that
can function both as (1) a first line of defense against new attacks and (2) a sec-
ond line of defense used in conjunction with any existing defense mechanism to
boost the security gain the latter can provide. To this end, we take a game theo-
retic perspective and investigate the use of Moving Target Defense (MTD) [39],
in which we randomly select a network from an ensemble of networks when clas-
sifying an input image (randomization at test time), for boosting the robustness
against adversarial attacks (see Fig. 1). Our contributions are–

– MTDeep – an MTD framework for an ensemble of DNNs, which can be used
as a meta-level defense-in-depth mechanism, to bootstrap any existing de-
fense mechanism and increase the robustness of the classification system to
different classes of adversarial attacks.

– A Bayesian Stackelberg Game formulation with two players– MTDeep and
the users. We then solve a multi-objective optimization problem to obtain
the Stackelberg Equilibrium of this game, which gives us the optimal ran-
domization strategy for the ensemble and also maximizes the classification
accuracy on regular as well as adversarially modified inputs.

– Empirical evaluation to show that MTDeep can be used as (1) a standalone
defense mechanism to increase the accuracy on adversarial samples by ≈ 24%
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Fig. 1: In this example, an attacker fails because (1) it chooses to perturb the image of
a 0 with an attack that works for the Hierarchical Recurrent Neural Network (HRNN)
in the ensemble and (2) feeds it as input to MTDeep. MTDeep then (3) rolls a dice and
(thus, randomly) picks the Multi-Layer Perceptron (MLP) to classify the input image
and (4) correctly classifies the input image to a zero because the MLP was immune to
the adversarial perturbaion crafted by the adversary for HRNN.

for MNIST, ≈ 22% for Fashion MNIST and ≈ 21% for ImageNET data-sets
against a variety of well-known attacks and (2) in conjunction with existing
defense mechanisms like Ensemble Adversarial Training, MTDeep increases
the robustness of a classification system (by ≈ 50% for MNIST). We also
show that black-box attacks (c.f. related work) on a distilled networked are
ineffective (in comparison to white-box attacks) against the MTDeep system.

– Analysis on an ensemble of DNNs for MNIST data that elucidates how much
of a security gain MTDeep can provide. As a part of that analysis, we define
the concept of differential immunity, which is (1) the first attempt at defining
a robustness measure for an ensemble against attacks and (2) a quantitative
metric to capture the notion of attack transferability.

Although prior research has shown that effectiveness of attacks can some-
times transfer across networks [33], we show that there is still enough residual
disagreement among networks that can be leveraged to design an add-on defense-
in-depth mechanism by using MTD. In fact, recent work has demonstrated that
it is possible to train models with limited adversarial attack transferability [2],
making our meta-level defense approach particularly attractive.

Our work is also different from any previous work that uses ensembles to
defend against attacks. In general, the concept of DNN-based ensembles sim-
ply tries to increase classification accuracy for legitimate users but provides
no protection against adversarial examples [15]. In [1], researchers propose an
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ensemble-based method to detect adversarial samples for the MINST dataset
(and this can be extended when the constituent networks are DNNs). Unfor-
tunately, such voting based mechanisms for ensembles can be viewed as simply
adding an extra pooling layer whose weights are equal to the importance given
to the votes of the constituent networks. At this point, all attacks on a DNNs
are trivially effective against such these voting-based ensembles. Furthermore,
researchers have also shown that an ensemble of vulnerable DNNs cannot result
in a classifier robust to attacks [14]. In contrast, MTDeep builds in an implicit
mechanism based on randomization at prediction time, making it difficult for an
adversary to fool the classification system.

2 Related Work

2.1 Attacks and Defenses for Deep Neural Networks

In this section, we briefly review existing work on crafting adversarial inputs
against deep neural networks (at test-time) and defenses developed against them.

Gradient-based perturbations: Recent literature has shown multiple ways of craft-
ing adversarial samples for a DNN [22, 24, 33, 20]. In these works, either (i) the
input features whose partial derivatives on the DNN’s loss functions are high are
modified by a small amount to maximize the DNN’s loss function and therefore
make the classifier misclassify them, or (ii) the geometric space around a point
is examined to find the closest class-separation boundary and generate pertur-
bation vectors that push the modified image to the other side of this boundary.
Similar to a chosen ciphertext attack, these attacks assume that the test im-
age which is to be modified is available beforehand. Furthermore, they assume
availability of complete knowledge about the classification network.

Black-box attacks: Black-box attacks against DNNs train a small substitute
model by assuming that the network being attacked provides test labels for
a list of images the adversary provides [23], similar to chosen plaintext attacks.
Surprisingly, attacks on this substitute model generalize to the actual network
[33]. Recent work on zeroth-order optimization has shown it is possible to create
black-box attacks without the need for substitute models [9].

Defenses. Defense techniques against the two types of attacks described above
commonly involve (1) generating adversarial perturbed training images using
one (or all) of the attack methods described and then (2) using the generated
images along with the correct labels to fine tune the parameters of the DNN
during training. This helps the DNN to correct its bias in some of the unexplored
areas of the high dimensional space, reducing the effectiveness of the adversarial
perturbations. Ensemble adversarial training [35] and stability training [38] are
two improvements on this defense technique.3 Besides these, researchers have

3 Ensemble Adversarial Training, uses an ensemble to generate adversarially perturbed
examples for all the constituent networks and uses them to strengthen a single net-
work [35]. Unlike us, it does not use the ensemble at classification time.
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developed defense mechanisms like gradient masking [25], defensive distillation
[26] and dimensionality reduction & ‘anti-whitening’ [4]. Some of these defense
mechanisms, similar to trends in cybersecurity, have been rendered ineffective
due to discovery of stronger attacks (eg. [7]). We do not consider these methods
further since our proposed framework can be used in conjunction with any of these
to improve their security guarantees. Lastly, our approach is further supported by
previous research works that show introduction of randomized switching makes it
harder for any attacker to reverse engineer a classification system with precision
[36], which is how most white-box attacks are constructed.

Universal perturbations: This DNN-specific perturbation when added to any in-
put image, makes a DNN misclassify it [21]. This attack is based on the DeepFool
attack [22] and although it is often time consuming to generate, only one “uni-
versal” perturbation per network needs be computed. Moreover, authors show
that adversarial training is ineffective in increasing robustness against these at-
tacks. Also, other state-of-the-art defense mechanisms ([35, 20]) have not shown
that they can mitigate this attack. Newer class of such DNN-specific attacks
such as Adversarial Patches [6] and BadNets [12] relax the constraint that the
perturbation is imperceivable to a human. We show that randomly switching
between networks of an ensemble to classify an input image, as MTDeep does,
can prove to be an effective defense against these attacks because these attacks
are network specific and often have low transferability.

There has been some effort in trying to protect machine learning systems
against attacks using randomization techniques at test time [5]. Unfortunately,
these are not general enough to be used for DNNs. Furthermore, these mecha-
nisms try to prevent misclassification rate under attack and end-up affecting the
classification accuracy on non-adversarial or legitimate test inputs.

2.2 Moving Target Defense

Moving Target Defense (MTD) is a paradigm used in software security that
tries to reduce the success rate of an attack by pro-actively switching between
multiple software configurations [39], thus enhancing system security [34]. Based
on the principles of MTD, we design a general purpose security framework for
Deep Neural Networks in this paper.

Devising effective switching strategies for MTD systems requires reasoning
about attacks in a multi-agent game theoretic fashion in order to provide formal
guarantees about the security of such systems [27]. In [29], the authors provide
a Bayesian Stackelberg Formulation of the problem and show that the optimal
mixed strategy leads to defense strategies that outperform trivial randomization
strategies. Thus, we model the interaction between an image classification sys-
tem driven by a ensemble of DNNs (MTDeep) and its users, both legitimate and
adversarial, as a Bayesian Stackelberg Game, providing provable guarantees on
the expected performance on both legitimate and adversarial inputs, a consider-
ation absent in the works on defense mechanism design for classifiers in general
and DNNs in particular.
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3 MTDeep: Moving Target Defense for Deep Neural
Networks

In a Moving Target Defense (MTD) system, the defender has multiple system
configurations. The attacker has a set of attacks that it can use to cripple the
configurations in the defender’s system. Given an input to the system, the de-
fender selects, at random, one of the configurations to run the input and returns
the output generated by that system. Since the attacker does not know which
system was specifically selected, its attacks are less effective than before (Figure
1). As stated earlier, randomization in selecting a configuration for classification
of each input is paramount. Unfortunately, an MTD framework for classification
systems, that leverages randomimzation, might end up reducing the accuracy of
the overall system in classifying non-perturbed images, because the DNN that
has the highest accuracy is not always used for classification. Thus, in order to
retain good classification accuracy and guarantee high security, we model the
interaction between MTDeep and the users as a Bayesian Stackelberg Game.
We show that the equilibrium results in the optimal selection strategy.

3.1 The Defender

The defender (MTDeep) provides a service for classification of images. The con-
figuration space for MTDeep are the DNNs in the ensemble that are trained
on the particular image classification task. Let N represent the set of defender
configurations. In the ensemble we design for our experiments on MNIST and
Fashion-MNIST datasets, we have three networks N = {CNN, MLP, HRNN}.
The networks, evident from their names, are based on three different network
architectures– Convolution Neural Networks (CNN) [19], Multi-Layer Percep-
trons (MLP) and Hierarchical Recurrent Neural Networks [11]– all of which give
reasonably high accuracy on the two data-sets (Figure 1). For experiments on
the ImageNET dataset, we use six pre-trained networks that have won the image
classifications over the last few years and have a reasonable high accuracy on the
data-set (see Table 2). It is worth emphasizing that this ensemble of classifiers
does not behave like well-known voting based ensembles and at classification
time, uses only a single network’s decision. Formally, a pure strategy for the de-
fender corresponds to selecting a single constituent network in the ensemble for
each test input and use it for classification. A mixed strategy is a probability dis-
tribution over the different pure strategies and on every test input, the defender
rolls a die (that represents the mixed strategy) to determine the constituent
network it will use for classification.

3.2 The User

The second player in this game is the user of the classification system. We divide
the user into two player types–Legitimate User (L) and the Adversary (A). L
tries to input non-perturbed images to MTDeep system for classification, which
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Legitimate User (L)
MTDeep Classification Image

MLP 99.1
CNN 98.3
HRNN 98.7

Adversarial User (A)
FGMm FGMc FGMh DFm DFc DFh PGDm PGDc PGDh

3.1 20.39 38.93 1.54 89.8 93.83 0.00 49.00 61.00
55.06 10.28 71.39 98.87 0.87 98.55 78.00 0.00 90.0
25.12 27.24 11.43 95.38 83.17 3.66 23.00 51.00 0.00

(a) MNIST

Legitimate User (L)
MTDeep Classification Image

MLP 88.68
CNN 92.95
HRNN 89.16

Adversarial User (A)
FGMm FGMc FGMh DFm DFc DFh PGDm PGDc PGDh

21.47 15.64 25.11 8.1 87.45 88.28 1.00 12.00 57.00
23.42 6.07 34.76 88.21 5.37 92.86 32.00 3.00 61.00
29.44 43.53 14.85 74.9 87.64 9.57 41.00 60.00 0.00

(b) Fashion MNIST

Table 1: The actions of the players and the utilities of the two user types–L and A
for (a) the MNIST and (b) the Fashion-MNIST datasets. The utility of the defender is
exactly the same as that of L for the co-operative game against the player type L and
hundred minus the utility of A in the constant sum game against A. The classification
accuracy of each constituent network against the most effective attack, i.e. the worst
case for each network, is highlighted in yellow.

L
MTDeep Image

VGG-F [8] (92.9, 92.9)
CaffeNet [18] (83.6, 83.6)

GoogLeNet [32] (93.3, 93.3)
VGG16 [31] (92.5, 92.5)
VGG19 [31] (92.5, 92.5)

ResNet-152 [13] (95.5, 95.5)

Adversarial User (A)

UPVGG−F UPCaffe UPGoogLe UPVGG−16 UPVGG−19 UPRes

(6.3, 93.7) (28.2, 71.8) (51.6, 48.4) (57.9, 42.1) (57.9, 42.1) (52.6, 47.4)
(26.0, 74.0) (6.7, 93.3) (52.3, 47.7) (60.1, 39.9) (60.1, 39.9) (52.0, 48.0)
(53.8, 46.2) (56.2, 43.8) (21.1, 78.9) (60.8, 39.2) (60.2, 39.8) (54.5, 45.5)
(36.6, 63.4) (44.2, 55.8) (43.5, 56.5) (21.7, 78.3) (26.9, 73.1) (36.6, 63.4)
(36.0, 64.0) (42.8, 57.2) (46.4, 53.6) (26.5, 73.5) (22.2, 77.8) (42.0, 58.0)
(53.7, 46.3) (53.7, 46.3) (49.5, 50.5) (53.0, 47.0) (54.5, 45.5) (16.0, 84.0)

Table 2: Normal form game matrices for the defender and the User types A and L
for classifiers on ImageNET and corresponding Universal Perturbation attacks. The
worst case classification accuracy of each constituent networks is highlighted in yellow.
Similar to Tab. 1, we notice that the attacks developed against a particular network is
the most effective attack against that network.

is its only action. The second type is the adversary A who essentially tries to per-
turb input images such that the classification system misclassifies these inputs.
In our threat model, we consider a strong adversary who knows the different
architectures we use in our MTDeep system. This means they can easily gener-
ate powerful white-box attacks for each of the networks in our system. We let
U denote this set of attacks the attacker can generate against our system. For
MNIST and Fashion-MNIST, we consider three classes of white-box attacks–
the Fast Gradient Method (FGM), the DeepFool (DF) attack and the Projected
Gradient Descent.4 (PGD) attacks (see Table 1) while for ImageNET, we restrict
ourselves to universal perturbation attacks because the cost of constructing per-
turbed images for each test image is computationally intensive (see Table 2).
Each attack (u ∈ U) is generated to cripple a particular constituent network in
the MTDeep ensemble (indicated using the sub-script) but used against each of
the defender’s constituent networks. They may or may not be equally effective
for all the configurations. In fact, for most the white-box attacks such as FGM
and PGD, we show that although theyhave some transferability across the dif-

4 The reward for PGD attacks are whole numbers because, in order to compute attack-
based perturbations in a reasonable amount of time, we evaluate its effectiveness for
perturbing 100 samples (as opposed to 10000 in the case of FGM and DF).
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ferent networks, no attack can completely cripple all the networks (Table 1 and
2). MTDeep, as we will later see, leverages this fact to boost the security against
adversarial examples.

3.3 Bayesian Game

MTDeep randomly picks a network n (∈ N) each time to classify an input im-
age. If we use a naive switching strategy, such as uniform random selection, to
pick a network whenever an input is provided, we will have equal chances of
choosing networks that have (1) low classification accuracy or (2) high vulnera-
bility to perturbed images, which will be sub-optimal. Also, the attacker might
eventually infer the defender’s switching strategy and exploit the highly vul-
nerable configurations more often. Thus, reasoning about the optimal strategy
becomes necessary. Furthermore, as shown later, arbitrary switching strategies
for an ensemble can be worse than using single networks in terms of classification
accuracy. Thus, we model the interaction between the ensemble and the users
as a Bayesian Game, which helps us compute the optimal switching strategy.

Existing works that design defense methods against adversarial attacks for
DNNs model the problem as a zero-sum game where the attacker tries to max-
imize the defender’s loss function by coming up with perturbed test examples
that the network misclassifies, whereas the defender tries to reduce the loss on
these adversarially perturbed examples. Fine tuning the classifier to have high
accuracy on adversarially perturbed inputs often has the side effect of reduc-
ing the classification accuracy on non-perturbed inputs from the test set [20].
In this paper, we move away from the zero-sum game assumption and try to
ensure that the defender minimizes the loss functions for both types of inputs
images– original test set images and the adversarially perturbed ones. Thus, we
want MTDeep to be effective for L (proportional to minimizing the loss on the
original test set) and, at the same time, increase the accuracy of classification for
the perturbed images (proportional to minimizing the loss against adversarial
inputs at test-time), making this a multi-objective optimization problem.

A natural question that arises is how much importance should we associate
with the two different objectives. Unfortunately, this is highly application spe-
cific. For example, a banking system that uses handwritten digit recognition for
identifying monetary amount on bank cheques should prioritize maximizing ac-
curacy on adversarial examples over an occasional misclassification on the actual
test set, whereas, an image captioning system that is trying to help a visually
challenged person understand posts on social media hardly needs to care about
adversarial examples. We capture this trade-off as the probability of the de-
fender’s belief about whether a particular input at test time is drawn from the
legitimate test set or is an adversarially perturbed image, making this a Bayesian
game. The utilities of each player in this game are as follows.

– The Legitimate User (L) and the defender both get a reward value that rep-
resents the accuracy of the DNN system. Thus, for using a network n in the
ensemble N with classification accuracy (say) 98% for an input image both
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the defender and L get a reward of 98 (see Tables 1 & 2).

– The Adversary (A) and the defender play a constant(= 100) sum game,
where the former’s reward value for an attack u against the network n is
given by en,u, which is the fooling rate and the defender’s reward is the
accuracy of n on perturbed inputs, which is (100− en,u) (Figure 1).

3.4 MTDeep’s Switching Strategy

Note that the defender D has to play first, i.e. deploy a classification system that
either a legitimate user L can use or an adversary A can attack. This imparts a
leader-follower paradigm to the formulated Bayesian Game. The defender leads
by playing first and then the attacker follows by choosing an attack action having
inferred the leader’s (mixed) strategy. Satisfying the multi-objective criterion,
mentioned above, is now equivalent to finding the Stackelberg Equilibrium of this
game. This equilibrium can be found using the mixed integer quadratic program
(MIQP) formulated in [27], which we now briefly describe. Let us denote the
strategy vector for the defender as x and their reward as RDn,u when the defender
uses the network n and user selects the action u. Similarly, the strategy vectors
for the adversary and the legitimate user types are qA and qL and their rewards
are RA

n,u and RL
n,u respectively. We seek to maximize the defender’s reward while

allowing the attacker to choose the most effective attack. Specifically, we solve
the following optimization problem –

max
x,q

∑
n∈N

(α ·
∑
u∈U

RDn,u xnq
A
u + (1− α) ·RDn,u xnqLu )

s.t.
∑
n∈N

xn = 1

∑
u∈U

qYu = 1 ∀ Y ∈ {A,L}

0 ≤ xn ≤ 1 ∀ n ∈ N
qYu ∈ {0, 1} ∀ Y ∈ {A,L}

0 ≤ vY −
∑
n∈N

RY
n,uxn ≤ (1− qYa )M

∀ u ∈ UY ∀ Y ∈ {A,L}

where α is the probability of A attacking a MTDeep system and M is a large
positive number. The objective function maximizes the defender’s expected re-
ward over its own switching strategy x and the strategy vector played by the
two user types (qA, qL) weighted by their relative importance α, which is the
probability with which the defender expects the attacker type A attacks their
system.

Thus, this MIQP, implemented in Gurobi, takes as input (1) the reward values
RD, RA, and RL obtained from accuracy metrics of the constituent networks, (2)
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α, the probability of the player types and outputs the optimal strategy for both
the defender (x) and the users. The first four constraints ensure that the strategy
vectors sum up to one since they represent probability of selecting actions. The
fifth constraint represents the dual of the attacker’s optimization problem which
tries to maximize their expected reward vY over the defender’s strategy. This
constraint captures the fact that the attacker knows x and uses it to select its
attack strategy qA. Note that the second constraint forces the users L and A to
select a pure strategy. As the authors in [27] show, this constraint is not limiting
for the attacker because for the attacker A, there always exists a pure strategy
in support of any mixed strategy it can play. For the attack the attacker selects,
the right side of the fifth constraint becomes 0 making vY =

∑
n∈N R

Y
n,u. Lastly,

the defender’s strategy, in the worst case, can be a pure strategy that directs
MTDeep to use a single network for classification.

4 Experimental Results

We first compare the effectiveness of MTDeep for MNIST, Fashion-MNIST and
the ImageNet datasets when it is used as a standalone defense mechanism. We
then show that MTDeep when piggybacked onto an existing defense mechanism
like Ensemble Adversarial Training, can result in boosting the accuracy against
adversarial attacks. We then analyze the effect of black-box attacks designed
using a distilled network that can capture a holistic view of an ensemble like
MTDeep which leverages randomization at test time. We show that given the
limiation on the number of samples in the of the MNIST dataset, blackbox
attacks are less effective than white box attacks. We finally introduce the notion
of differential immunity and show that this metric can capture the informal
notion of transferability of attacks. We discuss how this measure can give us an
understanding about how effective MTDeep will be. Finally, we talk about the
effects of setting an incorrect α (that a user needs to input) when calculating
the switching strategy for MTDeep.

4.1 MTDeep as a Standalone Defense Technique

We compare the effectiveness of MTDeep with two baselines. The first one mea-
sures the accuracy of each individual network in the ensemble and the second one
is a randomized ensemble that uses Uniform Random Strategy (MTD-URS) to
pick one of the constituent networks with equal probability. In contrast, MTDeep
uses the Stackelberg equilibrium strategy of the defender to pick a constituent
DNN at random. We do not showcase comparison against deterministic (such as
majority-voting or weighted) ensembles because, as discussed in the related work
section (Sec. 2), these deterministic functions are equivalent to a final layer of
a large network with multiple sub-componets built using CNN, RNN and MLP
building blocks. None the less, to drive the point home, under the heading of dif-
ferential immunity, we empirically demonstrate that majority voting ensembles
obtain a lower accuracy on adversarial examples when compared to MTDeep
(and even MTD-URS) for MNIST.
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Fig. 3: Accuracy of MTDeep with non-adversarially trained networks against (1) each
of the constituent networks and (2) a uniform random strategy for randomly selecting
a constituent network at test time. The gray line at the 10% mark denotes the accuracy
of randmonly guessing a class given an input image.

MNIST and Fashion-MNIST. For each of the data sets, we trained three
classification networks that, as stated before, were built using either Convolution
layers (CNN), Multi-layer Perceptrons (MLP) or Hierarchical Recurrent layers
(HRNN). The size of the train and test sets were 50000 and 10000 respectively.

We considered three attack methods for the attacker– the Fast Gradient
Based (FGM) attack (with ε = 0.3), the DeepFool (DF) attack (with three classes
being considered at each step when searching for an attack perturbation), and
the Projected Gradient Descent (PGD) attack (with ε : 0.3, ε− iter : 0.05). We
develop adversarial examples for each test image based on either the loss gradient
(for FGM and PGD) or the classification boundary in the feature space (for DF)
corresponding to each individual network in the ensemble. For example, the
adversarial examples generated using the PGD algorithm on the loss information
of the CNN is termed as PGDc in Table 1. We then find the classification
accuracy of each network on these adversarial examples to compute the utility
values shown in the table. Note that an adversarial example developed using
information about one network may not be as effective for the other networks. We
find that this is especially true for attacks like DF that exploit information about
a particular network’s classification boundary (eg. DFm reduces the classification
accuracy of MLP to 2% but is hardly effective against the other two networks.
Both of these are able to classify the adversarial examples correctly more than
95% of the time). On the other hand, attacks that exploit the gradient signals of
a particular network are somewhat effective against the other networks, i.e. have
high transferability (eg. FGMm reduces the accuracy of MLP to 3.1% and the
accuracy of HRNN and CNN to ≈ 25% and ≈ 55% respectively). We observe
this trend for both the MNIST and the Fashion-MNIST data-set.
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In Figure 3, we plot the accuracy of a particular classification system (the
objective function value), when using MTDeep vs. any of the single constituent
networks and MTD-URS as α varies from 0 to 1. When α = 0 and the defender
ignores the possibility of playing against an adversary, and thus, the mixed strat-
egy for MTDeep boils down to a pure strategy for selecting the most accurate
classifier. In our experiments, MTDeep choose the MLP for every input test-
image for the MNIST data-set and the CNN for classifying inputs drawn form
Fashion-MNIST. In contrast, MTD-URS has lower classification accuracy than
MTDeep because it also uses the two less accurate classifiers equal amounts of
time. Given that classification accuracies for each of the constituent networks
are relatively high, the difference is hard to notice in the graph.

When α = 1 and the defender cares about accuracy on only adversarial ex-
amples, strong attacks like PGD for a particular network can fool it 100% of
the time for MNIST data classification and at least 97% for Fashion-MNIST.
In contrast to using individual networks, randomized selection of networks at
classification time perform much better because an adversarial perturbation de-
veloped based on information from one network fails to fool other networks that
may be selected at classification time. MTDeep achieves a classification accu-
racy of 24% for MNIST and 25% for Fashion-MNIST while MTD-URS has a
classification accuracy of ≈ 20% for both the data sets. The difference in classi-
fication accuracy is mainly because MTD-URS picks more vulnerable networks
with equal probability. The mixed strategies for MTDeep in the case of the two
data-sets are as follows.

0 0.2 0.4 0.6 0.8 1

MNIST

Fashion-MNIST MLP

CNN

HRNN

Note that in the case of Fashion-MNIST, MLP has very low probability
of being played (≈ 0.001%) and the classification system is found to be the
most secure when utilizing a subset of two consequent networks (i.e. CNN and
HRNN). On the other hand, for classification of MNIST data, the MLP has
higher probability of being played at equilibrium than the CNN-based classifier.
HRNN is given equal weight as CNN for Fashion-MNIST but clearly dominates
in the case of MNIST.

ImageNET We use six different networks which have excelled on ILSVRC-
2012’s validation set [28] (Table 2) to construct the ensemble for MTDeep. Since
attacks like FGM, DF and PGD on these large networks have are time intensive
because they need to be calculated for every single test image, we assume the
adversary uses Universal Perturbations (UP) developed for each network in [21],
which (1) is built on top of DF and (2) have to be generated only once. These
UPs were generated by ensuring that the L∞ norm of the perturbations were
less than a bound ξ = 10 (Table 2). The actions of both the players and their
utilities are shown in Fig. 2.
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Fig. 5: For the ImageNET dataset, we (a) compare the accuracy of MTDeep vs. the
constituent networks and (b) analyze the participation of the different constituent
networks at equilibrium for different values of α.

Researchers have shown that defense mechanisms like adversarial training
are ineffective against this type of attack [21]. Moreover, state-of-the-art defense
mechanisms (c.f. discussion in related work), are still ineffective against this
attack. In such cases, MTDeep is a particularly attractive approach because
it can increase the robustness of the classification system even when all other
defense mechanisms are ineffective.

In Figure 5a, we plot the expected accuracy for the MTDeep along with
the objective values of each of the constituent networks when the probability
of an adversary type α varies. Given there are six constituent networks in the
ensemble, to avoid clutter, we don’t plot MTD-URS for brevity but observe that
it always has ≈ 4% less accuracy than MTDeep, which is a relatively high loss
in accuracy given the ImageNET data-set. When α = 0, MTDeep uses the most
accurate network (ResNet-152) that maximizes the classification accuracy. As
adversarial inputs become more ubiquitous and thus α moves towards 1, the
accuracy against the perturbed inputs drops for all the constituent networks of
the ensemble. Thus, to stay protected, MTDeep switches to a mixed policy that
utilizes more networks.

When the system receives only adversarial samples, i.e. α = 1, the accuracy
of MTDeep is 42% compared to 20% for the best of the single DNN architectures.
The optimal strategy in this case is x = (0, 0.171, 0.241, 0, 0.401, 0.187) which
discards some of the configurations (V GG-F and V GG-16 in this case). The
22% accuracy bump for modified images comes despite (i) high misclassification
rates of constituent networks against Universal Perturbations, and (ii) lack of
proven defense mechanisms against such attacks.

Remark. Let us denote accuracy on legitimate samples as aL and accuracy on
adversarial samples as aA. Note that the objective function (O), becomes the
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Legitimate User (L)
MTDeep Classification Image

MLPeat 97.99
CNNeat 98.97
HRNNeat 97.22

Adversarial User (A)
FGMm FGMc FGMh DFm DFc DFh PGDm PGDc PGDh

95.06 75.32 70.1 1.5 96.97 95.73 0.00 88.00 69.00
61.44 96.55 68.58 98.36 0.79 96.09 72.00 20.00 81.00
81.24 84.79 93.1 96.85 95.9 4.41 82.00 71.00 10.00

Fig. 6: The utilities for the players when the adver-
sary uses the aforementioned attacks against the
classifiers fine-tuned using Ensemble Adversarial
Training (EAT) with FGM attacks.
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Fig. 7: Accuracy of MTDeep with
adversarially trained networks.

equation of a line when aL and aA are constants because O = (aA−aL)∗α+aL.
Since the values of aL and aA are constant for each constituent network, the
expected accuracy (= O) results in a straight line with slope (aA − aL) and
intercept aL. Also, as accuracy on the legitimate samples is more than accuracy
on the adversarial inputs, i.e. aL > aA, the slope is negative. For the MTDeep
system (and also MTD-URS), the change in the accuracy values aA and aL is
small (2−4% relative to the 100% scale of Y-axis) as α varies from 0 to 1. Thus,
the plots although non-linear, at times appear to be linear.

4.2 MTDeep as an Add-on Defense-in-depth solution

We study the use of MTDeep on top of a state-of-the-art defense mechanism
called Ensemble Adversarial Training (EAT) [35]. EAT is an improvement on
top of the adversarial training procedure in which (1) an attack algorithm is
chosen, (2) perturbed images are generated using it for a particular network and
(3) the generated data is used (with their correct labels) to fine tune the weights
of the trained network that needs to be made more robust. Although this helps
to robustly the network to an extent, higher gains in accuracy against adversarial
examples can be gained by incorporating more perturbed examples in the new
test set, especially the ones that are generated by attacking other networks (i.e.
use all, not only the one whose parameters will be fine tuned). As more than one
network is required in this defense procedure, the authors call this as Ensemble
Adversarial Training even though the end product of this procedure is a single
network more robust to adversarial attacks. Note that MTDeep renders itself
naturally to this robustification method and also, with high probability, uses all
the robust constituent networks in the ensemble at test time.

Unfortunately, using EAT can only make the networks robust against attack
images generated by the particular attack algorithm it used for fine-tuning and
may still be vulnerable to stronger (i.e. more computationally intensive) attacks.
In Fig 6, we show that the utility values obtained using the three constituent
networks whose parameters are fine-tuned using EAT (which, in turn uses the
FGM attack to generate training samples on top of the MNIST test set). Note
that although there is a boost in overall accuracy against against adversarial
examples generated using FGM, the other attacks (1) DF, which is generated



MTDeep: Moving Target Defense for Deep Neural Networks 15

in a very different manner compared to FGM, and (2) PDG, which represents a
stronger class of attacks, are both still able to cripple the individual constituent
networks. Surprisingly, even for these attacks, the EAT procedure increase the
accuracy for attacks that are mis-aligned. For example, an attack PGDH gener-
ated using the model parameters of the HRNNeat brings down the accuracy of
the HRNNeat network to 9% whereas, it is found to be pretty ineffective against
the CNNeat (≈ 81%) and the MLPeat (≈ 72%). As to why EAT helps is reduc-
ing the transferability of these attacks could be an interesting future work. In
the present context, this phenomenon helps MTDeep used in conjunction to the
EAT method obtain impressive accuracy gains against attack images.

We highlight the results of our experiments with the fine-tuned networks on
the MNIST dataset in Fig 7. When α = 1, i.e. the worst case for the defender
and it only gets adversarially perturbed images as inputs, the accuracy of the
constituent networks are 0 − 4% because the EAT training is using the FGM
attack is ineffective against DF and PGD attacks for a particular network. On
the other hand, MTDeep achieves an accuracy of ≈ 55% against adversarially
perturbed images because of the reduced effectiveness in terms of transferability
of the attack images. Thus, we see a gain of more than 50% when classifying
only adversarially perturbed images.

4.3 Blackbox Attacks on MTDeep

MTDeep designs a strategy based on a set of known attacks. Once deployed,
an attacker can train a substitute network via distillation, i.e. use MTDeep
as an oracle to obtain labels for the (chosen-ciphertext like) training set for
the substitute network. Given that the distilled network captures information
relating to the randomization at test time, we wanted to see how effective such a
distillation procedure is in generating an expected network that mimics MTDeep.
More specifically, if adversarial samples generated on this distilled network [23]
successfully transfer against the MTDeep ensemble.

For this purpose, we used the non-adversarially trained networks for clas-
sifying MNIST data and consider the worst-case scenario where all inputs at
test time are adversarially modified, i.e. α = 1. Note that a distilled network
needs to capture both (1) the behavior of the ensemble and (2) the built-in
randomization (expected classification boundary) of the MTDeep ensemble with
limited training samples (50000, which is equal to the size of the training set
for the constituent networks) in order to be effective. We notice that MTDeep
has higher immunity to blackbox attacks and is able to classify attack inputs
≈ 32% of the time compared to the ≈ 24% accuracy against white-box attacks,
as discussed in the previous sub-section. Thus, there exists a white-box attack in
the attacker’s arsenal that is stronger than the black-box attack we generated,
thereby not affecting the defender’s optimal mixed strategy.

Note that even if a blackbox attack proved to be a more effective attack
against the ensemble (which it may be for some other domain or vision dataset),
this attack is not modeled by the defender in the original game. The defender
with knowledge of such blackbox attacks can do two actions– (1) incorporate the
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Networks
Differential

Immunity (δ)
Accuracy of Best
Constituent Net

Accuracy of
MTDeep

Gain

FashionMNIST 0.11 3% 24.8% 21.8%
MNIST 0.19 0% 23.68% 23.68%
ImageNET 0.34 22.2% 42.88% 20.68%
MNIST + EAT 0.78 4.41% 54.71% 50.3%

Table 3: Differential Immunity of the various ensembles and the gains seen in accuracy
compared to the best constituent networks when α = 1.

blackbox attack as one of the attacker’s actions which in turn, might change the
mixed strategy for random selection of constituent networks and (2) train the
individual networks against adversarial images generated by this attack. Both
of these can, in turn, lead the attacker to come up with new black-box attacks
against the improved ensemble. As to how and when, if at all, this procedure
leads to a stable point is another interesting future research direction.

4.4 Differential Immunity

Clearly, when an attack u ∈ U is able to cripple all the networks n ∈ N , using
MTDeep will provide no gains in robustness. In this section, we try to quantify
the gains MTDeep can provide. Let E : N × U → [0, 100] denote this fooling
rate function where E(n, u) is the fooling rate when an attack u is used against
a network n. Differential immunity of an ensemble U against a set of known
attacks E against it δ can measured with just the fooling rate values as follows,

δ(U,N) = min
u

maxnE(n, u)−minnE(n, u) + 1

maxnE(n, u) + 1

If the maximum and minimum fooling rates of u on a N differ by a wide
margin, then the differential immunity of MTDeep is higher. This is repre-
sented in the numerator. The denominator ensures that an attack which has
high impact (or fooling rate) reduces the differential immunity of a system com-
pared to a low impact attack even when the numerator is the same. The +1
factor in the denominator of the function prevents division by zero while the
+1 in the numerator ensures that higher values of maxnE(n, u) reduce the δ
when maxnE(n, u) = minnE(n, u). Note that δ ∈ [0, 1]. As per this measure,
the differential immunity of the various ensembles used in our experiments are
higlighted in Table 3.

As per our expectation, we observe a general trend that the differential immu-
nity of an ensemble in proportional to the accuracy gains obtained by MTdeep
when compared to the most secure constituent network in the ensemble. Al-
though we notice the lowest gain in case of ImageNET, note that this 20.68%
is substantially better absolute gain in accuracy than the ≈ 22% or the ≈ 24%
gain in accuracy for the Fashion-MNIST and the MNIST datasets with non-
adversarially trained DNNs because the number of classes in ImageNET is 1000
compared to 10 for the latter two datasets. A random class selector with zero
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Attacks 0 1 2 3

FGMC 4788 3641 1449 118
FGMH 389 2728 6667 212
FGMM 1513 5790 2479 214
FGMBB 2305 2569 2678 2444

Fig. 8: Agreement among con-
stituent networks when classi-
fying perturbed inputs for the
MNIST data-set.

50403020100−10−20−30−40−50

0

1

2

3

% deviation of α →

O
p
t
−

A
c
c
u
r
a
c
y
→

MTDeep

MTD-URS

Fig. 9: Loss in accuracy when real world α is dif-
ferent from the α MTDeep uses for modeling.

understanding of the input (provided there is no class imbalance among the ad-
versarial inputs) can achieve ≈ 10% accuracy for MNIST and Fashion-MNIST
where as it can can only obtain an accuracy of ≈ 0.001% for the ImageNET
data-set.

Note that existing measures of robustness are mostly designed for a single
DNN [3, 37] and thus, do not try to incorporate the notion of transferability,
i.e. to what extent is an attack designed for one network can effect another.
Thus, they cannot be used to correctly measure the robustness of an ensemble.
We propose differential immunity as one of the metrics for evaluating ensembles
that use any form of randomization at test time. It can be used to capture the
transferability of an adversarial attack and thus, provide a reasonable measure
of robustness for ensembles.

Disagreement Metrics. In Fig. 8, we highlight the number of perturbed test
images (total 10000) on which 0, 1, 2 or 3 constituent DNN’s classification out-
put(s) agree with the correct class label. We conducted these experiments using
the non-adversarially trained networks for MNIST classification and for brevity
purposes, we only use the FGM attack method. Note that the FGMC is the
strongest attack that can make all the n ∈ N misclassify at least 70% of the
images. As generating δ can be costly at times, which needs the fooling rates for
each pair (u, n), one can generate the agreement metrics on a small data set to
provide upper bounds for δ. This provides an idea as to how using a MTDeep
ensemble can increase the robustness against adversarial samples. In this case,
δMNIST ≤ 0.51 because for the strongest attack, every network in the ensem-
ble will misclassify (approx.) 49% of the time. Also, note that a majority based
ensemble can will only be able to guarantee an accuracy of ≈ 14% against the
FSMC attack because in all the other cases, only 0 or 1 network is able to cor-
rectly predict the correct class. In comparison, MTDeep when facing an attacker
who only uses FGM attacks obtains an accuracy of 26.8% against adversarially
perturbed inputs.

Towards Differentially Immune Networks. Previously, authors in [33] have shown
that constructing an ensemble with high δ is difficult. The authors show that
ideas like partitioning the training data into disjoint sets that are then used to
train different networks (∈ N) do not make the networks differentially immune.
This concept of an attack’s potency across networks it was not specifically tar-
geted for is defined as transferability of an attack [33] and, although informally



18 Sengupta et. al.

used, is similar our notion of differential immunity. Fortunately, recent works
highlight promising avenues that can be used to limit the transferability of at-
tacks [2]. If an ensemble of such networks can be developed, as we saw in the
case of DNNs for MNIST fine-tuned with EAT, MTDeep can provide significant
gains as a defense technique. In scenarios where generating ensembles with high
differential immunity is still difficult, MTDeep can still boost the accuracy of
classifiers (in conjunction or without other state-of-the-art defense mechanisms).

4.5 Participation of Individual Networks.

In Figure 5b, we explore the participation of individual networks in the mixed
strategy equilibria for MTDeep used to classify ImageNET data. The results
clearly show that while it is useful to have multiple networks providing dif-
ferential immunity (as testified by the improvement of accuracy in adversarial
conditions), the leveling-off of the objective function values with more DNNs in
the mix does underline that there is much room for research in actively devel-
oping DNNs that can provide greater differential immunity. Note that no more
than four (out of the six) networks participate in the equilibrium. An ensem-
ble of networks with higher differential immunity equipped with MTD can thus
provide significant gains in both security and accuracy.

4.6 Robustness against Miscalibrated α

So far in our discussion, we have assumed that α (the attacker’s probability) is
calibrated correctly when coming up with a randomization strategy. But if the
value of α is incorrect, the computed strategy ends up becoming sub-optimal.
In Figure 9, we plot the deviation of the chosen policy (based on the assumed
α) from the optimal as the real α is varied ±50% from the one assumed. The
BSG-framework remains quite robust (as opposed to a uniform random strategy)
i.e. the accuracy is within 0− 3% of the optimal accuracy. The robustness to α
further highlights the usefulness of MTDeep as a meta-defense meant to work not
only against adversarial attacks but also in the context of a deployed classifier
that will have to deal with adversaries as well as legitimate users.

5 Conclusion

In this paper, we introduced MTDeep – a framework inspired by Moving Target
Defense in cybersecurity – as ‘security-as-a-service’ to help boost the security of
existing classification systems based on Deep Neural Networks (DNNs). We mod-
eled the interaction between MTDeep and the users as a Bayesian Stackelberg
Game, whose equilibrium gives the optimal solution to the multi-objective prob-
lem of reducing the misclassification rates on adversarially modified images while
maintaining high classification accuracy on the non-perturbed images. We em-
pirically showed the effectiveness of MTDeep against various classes of attacks
for the MNIST, the Fashion-MNIST and the ImageNet data-sets. Lastly, we
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demonstrated how using MTDeep with existing defense mechanisms for DNNs
result in more robust classifiers and highlighted the importance of developing
ensembles with higher differential immunity.
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