
Proceedings

To appear in AAMAS Multiagent Interaction without Prior Coordination Workshop (MIPC 2017),
Sao Paulo, Brazil, May 2017.

Evaluating Ad Hoc Teamwork Performance in Drop-In
Player Challenges

Patrick MacAlpine, Peter Stone
Department of Computer Science, The University of Texas at Austin, Austin, TX 78701, USA

{patmac,pstone}@cs.utexas.edu

ABSTRACT

Ad hoc teamwork has been introduced as a general challenge
for AI and especially multiagent systems [17]. The goal is
to enable autonomous agents to band together with previ-
ously unknown teammates towards a common goal: collab-
oration without pre-coordination. A long-term vision for
ad hoc teamwork is to enable robots or other autonomous
agents to exhibit the sort of flexibility and adaptability on
complex tasks that people do, for example when they play
games of “pick-up” basketball or soccer. As a testbed for
ad hoc teamwork, autonomous robots have played in pick-
up soccer games, called “drop-in player challenges”, at the
international RoboCup competition. An open question is
how best to evaluate ad hoc teamwork performance—how
well agents are able to coordinate and collaborate with un-
known teammates—of agents with different skill levels and
abilities competing in drop-in player challenges. This paper
presents new metrics for assessing ad hoc teamwork perfor-
mance, specifically attempting to isolate an agent’s coor-
dination and teamwork from its skill level, during drop-in
player challenges. Additionally, the paper considers how to
account for only a relatively small number of pick-up games
being played when evaluating drop-in player challenge par-
ticipants.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent systems

General Terms

Algorithms, Experimentation

Keywords

Ad Hoc Teams, Multiagent Systems, Teamwork, Robotics

1. INTRODUCTION
The increasing capabilities of robots and their decreasing

costs is leading to increased numbers of robots acting in the
world. As the number of robots grows, so will their need
to cooperate with each other to accomplish shared tasks.
Therefore, a significant amount of research has focused on
multiagent teams. However, most existing techniques are
inapplicable when the robots do not share a coordination
protocol, a case that becomes more likely as the number of
companies and research labs producing these robots grows.
To deal with this variety of previously unseen teammates,

robots can reason about ad hoc teamwork [17]. When partic-
ipating as part of an ad hoc team, agents need to cooperate
with previously unknown teammates in order to accomplish
a shared goal. Reasoning about these settings allows robots
to be robust to the teammates they may encounter.

In [17], Stone et al. argue that ad hoc teamwork is “ulti-
mately an empirical challenge.” Therefore, a series of “drop-
in player challenges”[15, 6, 7] have been held at the RoboCup
competition [1], a well established multi-robot competition.
These challenges bring together real and simulated robots
from teams from around the world to investigate the cur-
rent ability of robots to cooperate with a variety of unknown
teammates.

In each game of the challenges, robots are drawn from
the participating teams and combined to form a new team.
These robots are not informed of the identities of any of
their teammates, but they are able to share a small amount
of information using a limited standard communication pro-
tocol that is published in advance. These robots then have
to quickly adapt to their teammates over the course of a
single game and discover how to intelligently share the ball
and select which roles to play.

Currently in drop-in player challenges, a metric used to
evaluate participants is the average goal difference received
by an agent across all games that an agent plays in. An
agent’s average goal difference is strongly correlated with
how skilled an agent is, however, and is not necessarily a
good way of evaluating an agent’s ad hoc teamwork perfor-
mance—how well agents are able to coordinate and collabo-
rate with unknown teammates. Additionally, who an agent’s
teammates and opponents are during a particular drop-in
player game strongly affects the game’s result, and it may
not be feasible to play enough games containing all possible
combinations of agents on different ad hoc teams, thus the
agent assignments to the ad hoc teams of the games that
are played may bias an agent’s average goal difference.

This paper presents new metrics for assessing ad hoc team-
work performance, specifically attempting to isolate an agent’s
coordination and teamwork from its skill level, during drop-
in player challenges. Additionally, the paper considers how
to account for only a relatively small number of games be-
ing played when evaluating drop-in player challenge partic-
ipants.

The rest of the paper is structured as follows. A descrip-
tion of the the RoboCup 3D simulation domain used for
this research is provided in Section 2. Section 3 explains
the drop-in player challenge. Section 4 details our metric
for evaluating ad hoc teamwork performance, and analysis

of this metric is provided in Section 5. Section 6 discusses
an extension to this metric when one can add agents with
different skill levels, but the same level of teamwork, to a
drop-in player challenge. How to account for a limited num-
ber of drop-in player games being played when evaluating ad
hoc teamwork performance is presented in Section 7. A case
study of the 2015 RoboCup 3D simulation drop-in player
challenge demonstrating our work is analyzed in Section 8.
Section 9 situates this work in literature, and Section 10
concludes.

2. ROBOCUP DOMAIN DESCRIPTION
Robot soccer [1] has served as an excellent research do-

main for autonomous agents and multiagent systems over
the past decade and a half. In this domain, teams of au-
tonomous robots compete with each other in a complex, real-
time, noisy and dynamic environment, in a setting that is
both collaborative and adversarial. RoboCup includes sev-
eral different leagues, each emphasizing different research
challenges. For example, the humanoid robot league em-
phasizes hardware development and low-level skills, while
the 2D simulation league emphasizes more high-level team
strategy. In all cases, the agents are all fully autonomous.
The RoboCup 3D simulation environment—the setting for

our work—is based on SimSpark,1 a generic physical multia-
gent systems simulator. SimSpark uses the Open Dynamics
Engine2 (ODE) library for its realistic simulation of rigid
body dynamics with collision detection and friction. ODE
also provides support for the modeling of advanced motor-
ized hinge joints used in the humanoid agents.
The robot agents in the simulation are homogeneous and

are modeled after the Aldebaran Nao robot. The agents in-
teract with the simulator by sending torque commands and
receiving perceptual information. Each robot has 22 degrees
of freedom, each equipped with a perceptor and an effector.
Joint perceptors provide the agent with noise-free angular
measurements every simulation cycle (20ms), while joint ef-
fectors allow the agent to specify the torque and direction
in which to move a joint. Although there is no intentional
noise in actuation, there is slight actuation noise that results
from approximations in the physics engine and the need to
constrain computations to be performed in real-time. Ab-
stract visual information about the environment is given to
an agent every third simulation cycle (60ms) through noisy
measurements of the distance and angle to objects within
a restricted vision cone (120◦). Agents are also outfitted
with noisy accelerometer and gyroscope perceptors, as well
as force resistance perceptors on the sole of each foot. Ad-
ditionally, agents can communicate with each other every
other simulation cycle (40ms) by sending 20 byte messages.
Games consist of two 5 minute halves of 11 versus 11

agents on a field size of 20 meters in width by 30 meters
in length. Figure 1 shows a visualization of the simulated
robot and the soccer field during a game.

3. DROP-IN PLAYER CHALLENGE
For RoboCup 3D drop-in player challenges3 each partici-

1http://simspark.sourceforge.net/
2http://www.ode.org/
3Full rules of the challenges can be found at
http://www.cs.utexas.edu/~AustinVilla/sim/
3dsimulation/2015_dropin_challenge/

Figure 1: A screenshot of the Nao-based humanoid robot (left),
and a view of the soccer field during a 11 versus 11 game (right).

pating team contributes two drop-in field players to a game.
Each drop-in player competes in full 10 minute games (two
5 minute halves) with both teammates and opponents con-
sisting of other drop-in field players. No goalies are used
during the challenge to increase the probability of goals be-
ing scored.

Ad hoc teams are chosen by a greedy algorithm given in
Algorithm 1 that attempts to even out the number of times
agents from different participants in a challenge play with
and against each other. In lines 6 and 7 of the algorithm
agents are iteratively added to teams by getNextAgent()

which uses the following ordered preferences to select agents
that have:

1. Played fewer games.

2. Played against fewer of the opponents.

3. Played with fewer of the teammates.

4. Played a lower maximum number of games against any
one opponent or with any one teammate.

5. Played a lower maximum number of games against any
one opponent.

6. Played a lower maximum number of games with any
one teammate.

7. Random.

Algorithm 1 terminates when all agents have played at least
one game with and against all other agents.

Algorithm 1 Drop-In Team Agent Selection

Input: Agents

1: games = ∅

2: while not allAgentsHavePlayedWithAndAgainstEachOther() do

3: team1 := ∅

4: team2 := ∅

5: for i := 1 to AGENTS PER TEAM do

6: team1← getNextAgent(Agents \ {team1 ∪ team2})
7: team2← getNextAgent(Agents \ {team1 ∪ team2})

8: games← {team1, team2}

9: return games

Each drop-in player can communicate with its teammates
using a simple protocol, — the use of the protocol is purely
optional. The protocol communicates the following informa-
tion:

• player’s team

• player’s uniform number

• player’s current (x,y) position on the field

• (x,y) position of the ball

• time ball was last seen

• if player is currently fallen over

A C++ implementation of the protocol is provided to all
participants.
All normal game rules apply in this challenge. Each player

is randomly assigned a uniform number from 2-11 at the
start of a game. The challenge is scored by the average
goal difference received by an agent across all games that an
agent plays in.

4. AD HOC TEAMWORK PERFORMANCE

METRIC
Since 2013 drop-in player challenges have been held at

RoboCup in multiple robot soccer leagues including 3D sim-
ulation, 2D simulation, and the physical Nao robot Standard
Platform League (SPL) [15, 14, 16, 6, 7]. Across these chal-
lenges there has been a high correlation between how well
a team does in the challenge and how well a team performs
in the main soccer competition. This correlation suggests it
may be the case that better individual skills and ability—as
opposed to teamwork—is a dominating factor when using
average goal difference to rank challenge participants.
As drop-in player challenges are designed as a test bed for

ad hoc teamwork, and the ability of an agent to interact with
teammates without pre-coordination, ideally we would like
to evaluate ad hoc teamwork performance—how well agents
are able to coordinate and collaborate with unknown team-
mates. To measure this we need a way of isolating agents’
ad hoc teamwork from their skill levels.
One way to infer an agent’s skill level, relative to another

agent, is to evaluate how agents perform in a drop-in player
challenge when playing games with teams consisting entirely
of their own agent. By playing two different agent teams
against each other, and with each teams’ members being
of the same agent, we are able to directly measure the rel-
ative performance difference between the two agents. Al-
though agents’ skill levels may not be the only factor in the
difference in performance between two teams—factors such
as team coordination dynamics may affect performance as
well—the teams’ relative performance is used as a proxy for
individual skills of its members. For agent team a playing
agent team b we denote their skill difference, measured as
the expected number of goals scored by agent team a minus
the expected number of goals scored by agent team b, to be
relSkill(a, b).
Given the relSkill value for all agent pairs, which can

be measured by having all agents play each other in a round
robin style tournament, we can estimate the goal difference
of any mixed agent team drop-in player game by summing
and then averaging the relSkill values of all agent pairs
on opposing teams. Equation 1 shows the estimated score
between two mixed agent teams A and B.

score(A,B) =
1

|A||B|

∑

a∈A,b∈B

relSkill(a, b) (1)

Next, to determine the overall skill of an agent relative
to all other agents, we compute the average goal difference

across all possible
((

N

K

)

∗
(

N−K

K

))

/2 drop-in player mixed
team game permutations for an agent, where N is the total
number of agents and K is the number of agents per team,
using the estimated goal difference of each game from Equa-
tion 1. We denote this value measuring the average goal dif-
ference (AGD) across all games for agent a as skillAGD(a).
Instead of explicitly computing the score for all game per-
mutations, we can simplify computation as shown in the
following example to compute skillAGD(a) for a drop-in
player challenge with agents {a, b, c, d} and two agents on
each team.

First determine the score of all drop-in game permutations
involving agent a (rS used as shorthand for relSkill):

score({a, b}, {c, d}) =
rS(a, c)+ rS(a, d)+ rS(b, c)+ rS(b, d)

4

score({a, c}, {b, d}) =
rS(a, b)+ rS(a, d)+ rS(c, b)+ rS(c, d)

4

score({a, d}, {b, c}) =
rS(a, b)+ rS(a, c)+ rS(d, b)+ rS(d, c)

4

Averaging all scores to get skillAGD(a), and as

rS(a, b) = −rS(b, a),

this simplifies to

skillAGD(a) =
rS(a, b)+ rS(a, c)+ rS(a, d)

6
.

Based on relSkill values canceling each other out when
averaging over all drop-in game permutations, as shown in
the above example, Equation 2 provides a simplified form
for estimating an agent’s skill.

skillAGD(a) =
1

K(N − 1)

∑

b∈Agents\a

relSkill(a, b) (2)

To evaluate agents’ ad hoc teamwork we also need a mea-
sure of how well they do when playing in mixed team drop-in
player games. Let dropinAGD(a) be the average goal differ-
ence for agent a across all mixed team permutations of drop-
in player games. Given an agent’s skillAGD and dropinAGD

values, we compute a metric teamworkAGD for measuring an
agent’s teamwork. An agent’s teamworkAGD value is com-
puted by subtracting an agent’s skill from it’s measured per-
formance in drop-in player games as shown in Equation 3.

teamworkAGD(a) = dropinAGD(a)− skillAGD(a) (3)

The teamworkAGD value serves to help remove the bias of
an agent’s skill from its measured averaged goal difference
during drop-in player challenges, and in doing so provides a
metric to isolate ad hoc teamwork performance.

5. AD HOC TEAMWORK PERFORMANCE

METRIC EVALUATION
To evaluate the teamworkAGD ad hoc teamwork perfor-

mance metric presented in Section 4, we need to be able to
create agents with different known skill levels and teamwork
such that an agent’s skill level is independent of its team-
work. Once we have agents with known differences in skill

level and teamwork relative to each other, it is possible to
check if the teamworkAGD metric is able to isolate agents’ ad
hoc teamwork from their skill levels during a drop-in player
challenge. For our analysis, we designed a RoboCup 3D sim-
ulation drop-in player challenge with ten agents each having
one of five skill levels and either poor or non-poor team-
work—there is a single agent for every combination of skill
level and teamwork type—as follows.
We first created five drop-in player agents with different

skill levels determined by how fast an agent is allowed to
walk—the maximum walking speed is the only difference
between the agents. While walking speed is only one factor
for determining an agent’s skill level—other factors such as
how far an agent can kick the ball and how fast it can get up
after falling are important too—by varying their maximum
walking speed we ensure agents’ overall skill levels differ sig-
nificantly. The five agents, from highest to lowest skill level,
were allowed to walk up to the following maximum walk-
ing speeds: 100%, 90%, 80%, 70%, 60%. We then played a
round robin tournament with each of the five agents playing
100 games against each other. During these games members
of each team consisted of all the same agent. Results from
these games of the relSkill values of agents with different
skill levels are shown in Table 1.

Table 1: Average goal difference of agents with different skill
levels when playing 100 games against each other. A positive
goal difference means that the row agent is winning. The number
at the end of the agents’ names refers to their maximum walk
speed percentages.

Agent60 Agent70 Agent80 Agent90
Agent100 1.73 1.36 0.78 0.24
Agent90 1.32 0.94 0.45
Agent80 0.71 0.52
Agent70 0.16

From the values in Table 1 we then compute the agents’
skills relative to each other (skillAGD) using Equation 2.
When doing so we model the drop-in player challenge as
being between ten participants consisting of two agents from
each of the five skill levels. We also assume that the average
goal difference between two agents of the same skill level is
0.4 Agents’ skill values are shown in Table 2.

Table 2: Skill values (skillAGD) for agents with different skill
levels. The number at the end of the agents’ names refers to their
maximum walk speed percentages.

Agent skillAGD

Agent100 0.183
Agent90 0.110
Agent80 0.000
Agent70 -0.118
Agent60 -0.174

The default strategy for each of our drop-in player agents
is for an agent to go to the ball if it is the closest member
of its team to the ball. Once at the ball, an agent then
attempts to kick or dribble the ball toward the opponent’s
goal. If the agent is not the closest to the ball, it waits at a
position two meters behind the ball in a supporting position.

4Empirically we have found that the average goal difference
when one team plays itself approaches 0 across many games.

To create agents with poor teamwork, we made modi-
fied versions of each of the five different skill level agents
such that the modified versions will still go to the ball if an
unknown teammate—an agent that is not the exact same
type—is closer or even already at the ball. These modified
agents, which we refer to as “PT agents” for poor teamwork,
can interfere with their unknown teammates and impede
progress of the team as a whole. The only teammates they
will not interfere with are known agent teammates—agents
of the same type with the same maximum walking speed
and poor teamwork attribute.

We played a drop-in player challenge with all ten agent
types. The total number of possible drop-in team combina-
tions is (

(

10

5

)

∗
(

5

5

)

)/2 = 126. Each combination was played
ten times, resulting in a total of 1260 games. Data from
these games showing each agent’s dropinAGD, as well as the
agents’ skillAGD and computed teamworkAGD, are shown in
Table 3. Note that a poor teamwork agent has the same
skillAGD as the non-poor teamwork agents with the same
walking speed—both agents behave identically when playing
on a team consisting of all their own agents.

Table 3: Skill value, drop-in player tournament average goal dif-
ference, and ad hoc teamwork performance metric for different
agents sorted by teamworkAGD.

Agent skillAGD dropinAGD teamworkAGD

Agent70 -0.118 0.017 0.135
Agent60 -0.174 -0.055 0.119
Agent80 0.000 0.087 0.087
Agent100 0.183 0.204 0.021
Agent90 0.110 0.123 0.013

PTAgent60 -0.174 -0.196 -0.022
PTAgent70 -0.118 -0.169 -0.051
PTAgent100 0.183 0.109 -0.074
PTAgent80 0.000 -0.101 -0.101
PTAgent90 0.110 -0.018 -0.128

While the data in Table 3 shows a direct correlation of
agents with higher skill levels having higher dropinAGD val-
ues, the teamworkAGD values rank all normal agents above
poor teamwork agents. As teamworkAGD is able to discern
between agents with different levels of teamwork, despite
the agents having different levels of skill, teamworkAGD is a
viable metric for analyzing ad hoc teamwork performance.
However, there is a trend for agents with lower skillAGD

values to have higher teamworkAGD values. We discuss and
account for this trend in the next section.

6. NORMALIZED AD HOC TEAMWORK

PERFORMANCE METRIC
Part of the reason teamworkAGD in Table 3 is able to sep-

arate the agents with poor teamwork independent of an
agent’s skill level is due to agents with the same teamwork
having similar values of teamworkAGD. Empirically we have
noticed that is not always the case that teams with the same
teamwork have similar teamworkAGD values. When skill lev-
els between agents are more spread out, there is a trend for
agents with lower skill levels to have higher values for team-
workAGD. This trend can be seen in Table 4 containing data
from a drop-in player challenge with agents having maxi-
mum walking speeds between 100% and 40% of the possible
maximum walking speed.

Table 4: Skill value, drop-in player tournament average goal dif-
ference, and ad hoc teamwork performance metric for different
agents sorted by teamworkAGD.

Agent skillAGD dropinAGD teamworkAGD

Agent40 -0.710 -0.270 0.440
Agent50 -0.226 -0.129 0.097
Agent55 -0.142 -0.081 0.061
Agent100 0.412 0.416 0.004
PTAgent50 -0.226 -0.230 -0.004
Agent90 0.296 0.259 -0.037
Agent70 0.028 -0.005 -0.033
Agent85 0.245 0.176 -0.069

PTAgent70 0.028 -0.179 -0.207
PTAgent90 0.296 0.043 -0.253

With the trend of agents with lower skillAGD having
higher values for teamworkAGD, the poor teamwork PTAgent50
agent in Table 4 has a higher teamworkAGD than several of
the non-poor teamwork agents.
To account for agents with the same teamwork, but differ-

ent skill levels, we can normalize these agents’ teamworkAGD
values to 0. We define the value added to each of these
agents’ teamworkAGD values to set them to 0 as the agents’
normOffset values. Thus for a set of multiple agents A
with the same teamwork, and for every agent a ∈ A, we
let normOffset(a) = −teamworkAGD(a). This produces a
normTeamworkAGD value as shown in Equation 4.

normTeamworkAGD(a) = teamworkAGD(a)+ normOffset(a)
(4)

While normTeamworkAGD will give the same value of 0 for
agents that we know to have the same teamwork, we want
to estimate normOffset, and then compute normTeamwork-

AGD, for agents that we do not necessarily know about their
teamwork. We accomplish this by first plotting the norm-

Offset values relative to teamworkAGD values for the agents
with the same teamwork, and then fit a curve through these
points. To intersect each point, we do a least squares fit
to a n − 1 degree polynomial, where n is the number of
points we are fitting the curve to. Then, to estimate any
agent’s normOffset value, we choose the point on this curve
corresponding to the agent’s skillAGD. A curve generated
by the normOffset values normalizing teamworkAGD to 0 for
Agent100, Agent85, Agent70, Agent55, and Agent40 from
Table 4 is shown in Figure 2.
Table 5 shows normOffset and normTeamworkAGD values

for the agents in Table 4. The normOffset values for agents
with 50% and 90% speeds are estimated. Considering that
normTeamworkAGD is able to discern between agents with dif-
ferent levels of teamwork, it is a useful metric for analyzing
ad hoc teamwork performance when agents with the same
teamwork have larger differences in their teamworkAGD val-
ues. To compute normTeamworkAGD, however, a set of agents
with the same teamwork, but different skill levels, must be
included in a drop-in player challenge.

7. DROP-IN PLAYER GAME PREDICTION
Computing dropinAGD requires results from all possible

agent to team assignment permutations of drop-in player
games. The number of games grows factorially as this is
((

N

K

)

∗
(

N−K

K

))

/2 drop-in player games, where N is the total
number of agents and K is the number of agents per team.

Figure 2: Curve of normOffset vs skillAGD based on normOff-
set values normalizing teamworkAGD to 0 for Agent100, Agent85,
Agent70, Agent55, and Agent40 from Table 4. Both data points
used to generate the curve (blue dots) and points used to esti-
mate normOffset for agents walking at 50% and 90% speeds (red
diamonds) are shown.

Table 5: teamworkAGD, normOffset, and normTeamworkAGD values
for the agents in Table 4 sorted by normTeamworkAGD.

Agent teamworkAGD normOffset normTeamworkAGD

Agent90 -0.037 0.057 0.020
Agent55 0.061 -0.061 0.000
Agent40 0.440 -0.440 0.000
Agent100 0.004 -.004 0.000
Agent70 -0.033 0.033 0.000
Agent85 -0.069 0.069 0.000
Agent50 0.097 -0.121 -0.024

PTAgent50 -0.004 -0.121 -0.125
PTAgent70 -0.207 0.033 -0.174
PTAgent90 -0.253 0.057 -0.196

Playing all permutations of drop-in player games may not
be tractable or feasible. This is especially true for drop-in
player competitions involving physical robots [6, 7].

To account for fewer numbers of drop-in player games be-
ing played, a prediction model can be built, based on data
from previously played drop-in player games, to predict the
scores of games that have not been played. Combining data
from both the scores of games played and predicted games
then allows for dropinAGD to be estimated.

One way to predict the scores of drop-in player games is
to model them as a linear system of equations. More specif-
ically, we can represent a drop-in player game as a linear
equation with strength coefficients for individual agents, co-
operative teammate coefficients for pairs of agents on the
same team, and adversarial opponent coefficients for pairs
of agents on opposing teams.

Given two drop-in player teams A and B, score(A,B) is
modeled as the sum of strength coefficients S,

∑

a∈Agents

Sa ∗

1 if a ∈ A
−1 if a ∈ B
0 otherwise

teammate coefficients T ,

∑

a∈Agents,b∈Agents,a<b

Ta,b ∗

1 if a ∈ A and b ∈ A
−1 if a ∈ B and b ∈ B
0 otherwise

and opponent coefficients O,

∑

a∈Agents,b∈Agents,a<b

Oa,b ∗

1 if a ∈ A and b ∈ B
−1 if a ∈ B and b ∈ A.
0 otherwise

There areN strength coefficients, and
(

N

2

)

of both teammate

and opponent coefficients, for a total ofN+2
(

N

2

)

coefficients.
To solve for the coefficients in the system of linear equa-

tions least squares regression is used. There needs to be
enough data from games such that every agent has played
with and against every other agent, however, so that there
is at least one instance of every coefficient being multiplied
by a non-zero number. Using Algorithm 1, with 10 agents
total and 5 agents per team, this requires only 5 games. Fig-
ure 3 shows how the number of games required to create a
prediction model increases as the number of agents increase
when using Algorithm 1. Although it is possible to create a
prediction model with a minimum number of games, such a
system will be very underdetermined and more games will
result in better predictions.

Figure 3: The number of games required to play all agents with
and against every other agent using Algorithm 1 as the number of
agents increase. This data assumes there are five agents on each
team.

As an example of our prediction model, Tables 6 and 7
show predicted values of dropinADG created from game scores
generated by prediction models built from half the game
data—data from 630 games—used to compute dropinADG

values in Tables 3 and 4 respectively. More specifically, data
from games encompassing half of all possible agent to team
assignment permutations of drop-in player games—the first
63 out of 126 possible unique team permutations generated
by letting Algorithm 1 continue to run even after all teams
have played with and against each other—was used to build
the prediction models.

Table 6: The dropinAGD values from Table 3 (computed from all
1260 games) compared to both dropinAGD values from half the

games played used to compute the data in Table 3 (1
2
dropinAGD

with 630 games), and predicted dropinAGD values generated from
a prediction model built from the game data used to compute
1

2
dropinAGD (Pred. dropinAGD with 630 games). The difference

(error) from the true dropinAGD values for both half the games
played and predicted dropinAGD are shown in parentheses.

dropinAGD 1

2
dropinAGD Pred. dropinAGD

Agent 1260 games 630 games 630 games

Agent100 0.204 0.194 (0.010) 0.223 (0.019)
Agent90 0.123 0.133 (0.010) 0.122 (0.001)

PTAgent100 0.109 0.114 (0.005) 0.117 (0.008)
Agent80 0.087 0.121 (0.034) 0.095 (0.008)
Agent70 0.017 0.006 (0.011) 0.021 (0.004)

PTAgent90 -0.018 -0.022 (0.004) -0.019 (0.001)
Agent60 -0.055 -0.105 (0.050) -0.094 (0.039)

PTAgent80 -0.101 -0.060 (0.041) -0.073 (0.028)
PTAgent70 -0.169 -0.194 (0.025) -0.181 (0.012)
PTAgent60 -0.196 -0.187 (0.009) -0.212 (0.016)

Table 7: The dropinAGD values from Table 4 (computed from all
1260 games) compared to both dropinAGD values from half the

games played used to compute the data in Table 4 (1
2
dropinAGD

with 630 games), and predicted dropinAGD values generated from
a prediction model built from the game data used to compute
1

2
dropinAGD (Pred. dropinAGD with 630 games). The difference

(error) from the true dropinAGD values for both half the games
played and predicted dropinAGD are shown in parentheses.

dropinAGD 1

2
dropinAGD Pred. dropinAGD

Agent 1260 games 630 games 630 games

Agent100 0.416 0.454 (0.038) 0.436 (0.020)
Agent90 0.259 0.356 (0.097) 0.296 (0.037)
Agent85 0.176 0.203 (0.027) 0.201 (0.025)

PTAgent90 0.043 0.105 (0.062) 0.048 (0.005)
Agent70 -0.005 -0.019 (0.014) -0.016 (0.011)
Agent55 -0.081 -0.168 (0.087) -0.132 (0.051)
Agent50 -0.129 -0.121 (0.008) -0.098 (0.031)

PTAgent70 -0.179 -0.241 (0.062) -0.173 (0.006)
PTAgent50 -0.230 -0.238 (0.008) -0.241 (0.011)
Agent40 -0.270 -0.330 (0.060) -0.323 (0.053)

The majority of the predicted dropinAGD values in Ta-
bles 6 and 7 are closer to the true dropinAGD values than
that of their counterpart 1

2
dropinAGD values computed di-

rectly from the games used to build the prediction mod-
els. Furthermore, the predicted dropinAGD values reduce
the mean squared error relative to the 1

2
dropinAGD values:

from 6.405× 10−4 to 3.212× 10−4 and from 3.076× 10−3 to
9.068× 10−4 for Tables 6 and 7 respectively.

8. CASE STUDY: ROBOCUP 2015 DROP-IN

PLAYER CHALLENGE
Table 8 shows the results of computing normTeamworkAGD

values for the ten released binaries of the 2015 RoboCup
3D simulation drop-in player challenge [16] participants. In
doing so we added five agents with different skill levels but
the same teamwork to the challenge: Agent100, Agent80,
Agent65, Agent50, and Agent30. These agents, chosen specif-
ically to have skillAGD values that span across the range of

the 2015 RoboCup 3D simulation drop-in player challenge
participants, are the same as the drop-in player agents used
in our previous experiments—with the number at the end
of the agents’ names referring to their maximum walk speed
percentages—except now the agents are made slightly more
competitive by having them communicate to their known
teammates (those of the exact same agent type) where they
are kicking the ball. Once an agent hears from a teammate
the location its teammate is kicking the ball to, the agent
then runs toward that location in anticipation of the ball
being kicked there.
As there are 15 agents in the challenge, which would re-

quire
((

15

5

)

∗
(

10

5

))

/2 = 378,378 possible agent assignments
for drop-in player games, we only played 1000 games—the
first 1000 team permutations generated by letting Algorithm 1
continue to run even after all teams have played with and
against each other—and then built a prediction model from
the results of these games to compute predicted dropinAGD

values for all agents. Using a prediction model is the only
way for us to compute dropinAGD, and in turn normTeam-

workAGD, given the large increase in the number of games
needed to compute dropinAGDwhen adding five extra agents.
The curve used to estimate normOffset values, and gener-
ated by the normOffset values normalizing teamworkAGD to
0 for Agent100, Agent80, Agent65, Agent50, and Agent30
from Table 8, is shown in Figure 4.

Figure 4: Curve of normOffset vs skillAGD based on normOff-
set values normalizing teamworkAGD to 0 for Agent100, Agent80,
Agent65, Agent50, and Agent30 from Table 8. Both data points
used to generate the curve (blue dots) and points used to estimate
normOffset (red diamonds) are shown.

When analyzing the data in Table 8 we empirically find
that most of the agents with lower teamworkAGD values in-
terfere with their teammates when going to the ball. On
the other hand, UTAustinVilla—the agent with the high-
est teamworkAGD value—purposely avoids running into team-
mates, and also checks to ensure it will not collide with other
agents before attempting to kick the ball on its team’s kick-
offs [15].

9. RELATED WORK
Multiagent teamwork is a well studied topic, with most

work tackling the problem of creating standards for coordi-

nating and communicating. One such algorithm is STEAM [18],
in which team members build up a partial hierarchy of joint
actions and monitor the progress of their plans. STEAM is
designed to communicate selectively, reducing the amount
of communication required to coordinate the team. In [8],
Grosz and Kraus present a reformulation of the SharedPlans,
in which agents communicate their intents and beliefs and
use this information to reason about how to coordinate joint
actions. In addition, SharedPlans provides a process for re-
vising agents’ intents and beliefs to adapt to changing condi-
tions. In the TAEMS framework [10], the focus is on how the
task environment affects agents and their interactions with
one another. Specifically, agents reason about what informa-
tion is available for updating their mental state. While these
algorithms have been shown to be effective, they require that
the teammates share their coordination framework.

On the other hand, ad hoc teamwork focuses on the case
where the agents do not share a coordination algorithm.
In [13], Liemhetcharat and Veloso reason about selecting
agents to form ad hoc teams. Barrett et al. [3] empirically
evaluate an MCTS-based ad hoc team agent in the pursuit
domain, and Barrett and Stone [2] analyze existing research
on ad hoc teams and propose one way to categorize ad hoc
teamwork problems. Other approaches include Jones et al.’s
work [11] on ad hoc teams in a treasure hunt domain. A
more theoretical approach is Wu et al.’s work [19] into ad
hoc teams using stage games and biased adaptive play.

In the domain of robot soccer, Bowling and McCracken [4]
measure the performance of a few ad hoc agents, where each
ad hoc agent is given a playbook that differs from that of its
teammates. In this domain, the teammates implicitly assign
the ad hoc agent a role, and then react to it as they would
any teammate. The ad hoc agent analyzes which plays work
best over hundreds of games and predicts the roles that its
teammates will play.

A popular way of ranking players based on relative skill
is the Elo [5] rating system originally designed to rank chess
players. While Elo only works in two player games, the
TrueSkill [9] rating system allows for ranking players in games
with multiple player teams. These ranking systems do not
attempt to decouple a player’s skill from its teamwork per-
formance, and we are unaware of any such previously exist-
ing metrics that decouple skill and teamwork in an ad hoc
teamwork setting.

An alternative and potentially promising way of estimat-
ing scores of drop-in player games is Liemhetcharat and
Luo’s adversarial synergy graph model [12] which has been
used to estimate the scores of basketball games based on
player lineups.

10. CONCLUSIONS
Drop-in player challenges serve as an exciting testbed for

ad hoc teamwork, in which agents must adapt to a variety of
new teammates without pre-coordination. These challenges
provided an opportunity to evaluate agents’ abilities to co-
operate with new teammates to accomplish goals in complex
tasks. They also served to encourage the participants in the
challenges to reason about teamwork and what is actually
necessary to coordinate a team.

This paper presents new metrics for assessing ad hoc team-
work performance, specifically attempting to isolate an agent’s
coordination and teamwork from its skill level, during drop-
in player challenges. Additionally, the paper offers a predic-

Table 8: Computed values from released binaries of the 2015 RoboCup 3D simulation drop-in player challenge sorted by normTeamworkAGD.
Values for skillAGD were computed from every agent playing 100 games against each of the other agents with teams consisting of all the
same agent. Predicted dropinAGD values (Pred. dropinAGD) were computed using a prediction model built from the results of playing
1000 drop-in player games—only a very small partial amount of all 378,378 possible agent assignments for drop-in player games. These
predicted dropinAGD values were then used in the computation of teamworkAGD, normOffset, and normTeamworkAGD values.

Agent skillAGD Partial (1000 games) dropinAGD Pred. dropinAGD teamworkAGD normOffset normTeamworkAGD

UTAustinVilla 0.932 1.184 1.178 0.246 0.129 0.375
FCPortugal 0.384 0.228 0.262 -0.122 0.267 0.145

magmaOffenburg 0.038 -0.069 -0.047 -0.085 0.139 0.054
Agent100 1.095 1.004 1.031 -0.064 0.064 0
Agent80 0.772 0.586 0.577 -0.195 0.195 0
Agent65 0.355 0.085 0.091 -0.264 0.264 0
Agent50 -0.278 -0.151 -0.129 0.149 -0.149 0
Agent30 -1.456 -0.432 -0.437 1.019 -1.019 0
BahiaRT 0.328 0.044 -0.029 -0.357 0.260 -0.097

RoboCanes 0.178 -0.207 -0.199 -0.377 0.216 -0.161
FUT-K 0.520 -0.027 0.029 -0.491 0.263 -0.228
Apollo3D -0.533 -0.486 -0.506 0.027 -0.465 -0.438

HfutEngine3D -1.124 -0.468 -0.470 0.654 -1.100 -0.446
CIT3D -0.574 -0.581 -0.589 -0.015 -0.519 -0.534
Nexus3D -0.676 -0.713 -0.763 -0.087 -0.653 -0.740

tion model for the scores of drop-in player games. This pre-
diction model allows for smaller numbers of drop-in games
being played when evaluating drop-in player challenge par-
ticipants. When combined these contributions make it easier
to study and perform research on ad hoc teamwork.

Acknowledgments

This work has taken place in the Learning Agents Research Group

(LARG) at UT Austin. LARG research is supported in part by

NSF (CNS-1330072, CNS-1305287, IIS-1637736, IIS-1651089), ONR

(21C184-01), AFOSR (FA9550-14-1-0087), Raytheon, Toyota, AT&T,

and Lockheed Martin. Peter Stone serves on the Board of Directors

of, Cogitai, Inc. The terms of this arrangement have been reviewed

and approved by the University of Texas at Austin in accordance with

its policy on objectivity in research.

11. REFERENCES
[1] RoboCup. http://www.robocup.org/.
[2] S. Barrett and P. Stone. An analysis framework for ad

hoc teamwork tasks. In AAMAS ’12, June 2012.
[3] S. Barrett, P. Stone, and S. Kraus. Empirical

evaluation of ad hoc teamwork in the pursuit domain.
In AAMAS ’11, May 2011.

[4] M. Bowling and P. McCracken. Coordination and
adaptation in impromptu teams. In AAAI, 2005.

[5] A. Elo. The rating of chess players, past and present
(arco, new york). 1978.

[6] K. Genter, T. Laue, and P. Stone. Benchmarking
robot cooperation without pre-coordination in the
robocup standard platform league drop-in player
competition. In Proceedings of the 2015 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS-15), September 2015.

[7] K. Genter, T. Laue, and P. Stone. Three years of the
robocup standard platform league drop-in player
competition: Creating and maintaining a large scale
ad hoc teamwork robotics competition. Autonomous
Agents and Multi-Agent Systems (JAAMAS), pages
1–31, 2016.

[8] B. Grosz and S. Kraus. Collaborative plans for
complex group actions. Artificial Intelligence,
86:269–368, 1996.

[9] R. Herbrich, T. Minka, and T. Graepel. TrueskillTM: a
bayesian skill rating system. In Proceedings of the 19th
International Conference on Neural Information
Processing Systems, pages 569–576. MIT Press, 2006.

[10] B. Horling, V. Lesser, R. Vincent, T. Wagner,
A. Raja, S. Zhang, K. Decker, and A. Garvey. The
TAEMS White Paper, January 1999.

[11] E. Jones, B. Browning, M. B. Dias, B. Argall, M. M.
Veloso, and A. T. Stentz. Dynamically formed
heterogeneous robot teams performing
tightly-coordinated tasks. In ICRA, pages 570 – 575,
May 2006.

[12] S. Liemhetcharat and Y. Luo. Applying the synergy
graph model to human basketball. In Proceedings of
the 2015 International Conference on Autonomous
Agents and Multiagent Systems, pages 1695–1696,
2015.

[13] S. Liemhetcharat and M. Veloso. Modeling mutual
capabilities in heterogeneous teams for role
assignment. In IROS ’11, pages 3638 –3644, 2011.

[14] P. MacAlpine, M. Depinet, J. Liang, and P. Stone. UT
Austin Villa: RoboCup 2014 3D simulation league
competition and technical challenge champions. In
RoboCup-2014: Robot Soccer World Cup XVIII,
Lecture Notes in Artificial Intelligence. Springer
Verlag, Berlin, 2015.

[15] P. MacAlpine, K. Genter, S. Barrett, and P. Stone.
The RoboCup 2013 drop-in player challenges:
Experiments in ad hoc teamwork. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), September 2014.

[16] P. MacAlpine, J. Hanna, J. Liang, and P. Stone. UT
Austin Villa: RoboCup 2015 3D simulation league
competition and technical challenges champions. In
RoboCup-2015: Robot Soccer World Cup XIX, Lecture
Notes in Artificial Intelligence. Springer Verlag,
Berlin, 2016.

[17] P. Stone, G. A. Kaminka, S. Kraus, and J. S.
Rosenschein. Ad hoc autonomous agent teams:
Collaboration without pre-coordination. In AAAI ’10,
July 2010.

[18] M. Tambe. Towards flexible teamwork. Journal of
Artificial Intelligence Research, 7:81–124, 1997.

[19] F. Wu, S. Zilberstein, and X. Chen. Online planning
for ad hoc autonomous agent teams. In IJCAI, 2011.

Getting help without asking: Stigmergic planning for
human-robot collaboration

(Extended Abstract)

David Buckingham
Human-Robot Interaction Lab

Tufts University
Medford, MA 02155

david.buckingham@tufts.edu

Matthias Scheutz
matthias.scheutz@tufts.edu

ABSTRACT
A robot may be unable to perform an action necessary for
accomplishing its goal even though other agents in the same
environment can perform the action. In that case, the robot
should develop a composite plan that includes the necessary
action and try to recruit the other agents to perform that
action. Even if the robot is unable to communicate explic-
itly, it may be able to modify the shared environment to
stigmergically evoke the necessary action.

CCS Concepts
•Computing methodologies→Multi-agent planning; Robotic
planning;

Keywords
Human-Robot Teaming, Stigmergy, Human-Aware Planning,
Multi-Agent Planning

1. INTRODUCTION
When a robot is unable to perform one or more actions

that are necessary for accomplishing its goals, it should be
able to integrate into its plan the capacities of other agents
that can perform the action on its behalf. We consider a
robot sharing an environment with a single human. How-
ever, our methodology is applicable to interactions between
more than two agents and to interactions between robots.

First, we demonstrate how the robot can incorporate the
human’s abilities into a composite plan and ask the human
to perform the desired action. We then consider the pos-
sibility that the robot is unable or unwilling to talk to the
human to ask for help. In this case, the robot can use stig-
mergy, which involves indirect coordination between agents
by means of traces left in a shared environment[2]: the robot
modifies the environment in order to cause the human to
perform the desired action.

2. MODIFIED-SERENDIPITY

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Previous work[1] has formalized and implemented a human-
robot teaming technique whereby a robot creates “serendip-
itous” conditions to help a human accomplish her goal. In
that system, the robot does not make any explicit commit-
ment. Instead, the robot attempts to construct a composite
(involving both robot and human) plan with lower total cost
that the human’s original plan. If the robot can communi-
cate with the human, it tells the human about the new plan.
However, if communication is unavailable, and if necessary
constraints are fulfilled, the robot uses stigmergy to effect
the composite plan. The robot’s contribution to the com-
posite plan alters the shared environment in such a way that
when the human calculates a new optimal plan the result is
the human contribution to the composite plan. This new
plan has lower cost than the original plan. This system uses
Integer Programming to find composite plans that satisfy
the constraints necessary for such “planned serendipity”.

We propose a minor modification to this system to take
into consideration the robot’s goals, which may be inde-
pendent of the human’s goals. As presented, only propo-
sitions in the human’s goals are constrained to be true at
the planning horizon. We modify the system to include the
robot’s goals in this constraint. We call the modified system
Modified-Serendipity. We apply Modified-Serendipity to our
problem of recruiting agents to help the robot accomplish a
task that it cannot achieve alone.

The following algorithm allows the robot to use Modified-
Serendipity when appropriate. First, the robot attempts to
construct a plan to accomplish its goal state based on its
available actions. If it finds a plan, the robot carries out the
actions in the plan and the algorithm terminates. Otherwise,
the robot creates a representation of a super-agent consisting
of all agents sharing the robot’s environment. The super-
agent has a composite goal state consisting of the union of
the goal states of all agents. If the robot can communi-
cate with the other agents, it again attempts to construct
a plan to accomplish its goals using the union of its pos-
sible actions and those of the other agents. If the robot
finds a plan, it asks the other agents to perform the actions
that it cannot perform. If communication is not possible
(or in order to exploit an antagonistic agent), the robot in-
vokes Modified-Serendipity with the composite goal state.
If Modified-Serendipity yields a solution, the robot carries
out the actions assigned to it by the plan. Note that the
Modified-Serendipity will only return a plan if all parts of
the goal state are fulfilled. If multiple such plans exist, it
will return the plan with the lowest cost.

3. EXAMPLE SCENARIOS
Our example scenarios share the following assumptions:

The human has perfect knowledge of the shared environment
but does not know the robots goals or plans; The robot has
perfect knowledge of the shared environment and of the hu-
man’s goals; The robot knows that the human will calculate
plans that are optimal given the human’s knowledge, and
thus the robot has perfect knowledge of the human’s plans.

In our first example scenario (Figure 1), the robot has the
goal to move to a charging station in Room 1, on the far
side of a door which only the human can open. Rooms 1
and 2 contain wrenches, and the human plans to move to
Room 2 to get the wrench there. The robot cannot create a
plan to achieve its goal using only its own actions because
it is unable to open the door. Instead, the robot constructs
a composite plan that includes actions that the human can
perform. Then the robot asks the human to open the door
and, after the door is open, moves to the charging station.

Alternatively, if communication is impossible or undesir-
able, for example, because the human finds that talking to
the robot takes too long, the robot can try to get the human
to open the door without asking. The robot uses stigmergy
to effect the composite plan. Since the human knows that
there is a second wrench in Room 1, the robot assumes that
she will go there if she does not find the wrench in Room
2. Thus, the robot makes the following composite plan: the
robot moves the wrench from Room 2 to Room 3; the human
goes to Room 2, sees that the wrench is missing, and goes
to Room 1 (opening the door) to get the other wrench; the
robot goes through the open door and moves to the charging
station.

This composite plan requires the robot to deceive the hu-
man. Furthermore, it requires the human to do more work
than her original plan. Either or both of these considerations
might be admissible in the case of a collaborative relation-
ship, i.e. if the human wants the robot to achieve its goal.
However, the robot will have to consider any added costs to
the human when making a composite plan. Alternatively,
in an indifferent or adversarial setting, the robot might dis-
regard the increased cost.

In our second scenario (Figure 2), the robot has the goal to
move to the charging station in Room 5, but is again barred
by a door that only the human can open. The human plans
to move to Room 4 to get the wrench and the hammer. The
robot constructs the following composite plan: the robot
moves the wrench from Room 4 to Hall 8; the human enters
Hall 8, sees the wrench there, and calculates a new opti-
mal plan for retrieving a wrench and hammer; the human
gets the wrench from Hall 8 and the hammer from Room 5
(opening the door); the robot goes through the open door
and moves to the charging station.

Unlike our previous example, this composite plan is less
work for the human than her original plan. It not only per-
mits the robot to accomplish its goal, it is also serendipitous
for the human.

4. CONCLUSIONS
In this preliminary presentation we have proposed to ap-

ply a planning algorithm developed in previous work to a
novel problem: How can a robot use stigmergy to recruit
help and overcome the inability to perform an action? Next,
will perform a suite of experiments to test and evaluate our

Figure 1: The robot’s goal is to move to the charging
station in Room 1, but it is barred by a door (dotted
line). The human’s goal is to move to Room 2 to
retrieve the wrench. There is also a wrench in Room
1.

Figure 2: The robot’s goal is to move to the charging
station in Room 5, but it is barred by a door (dotted
line). The human’s goal is to move the Room 4 to
retrieve the wrench and the hammer. There is also
a hammer in Room 5.

approach in a variety of scenarios. Finally, while we have as-
sumed perfect knowledge and human planning optimality;
future work will relax these assumptions by incorporating
belief models [3] into the framework.

REFERENCES
[1] T. Chakraborti, G. Briggs, K. Talamadupula,

Y. Zhang, M. Scheutz, D. Smith, and S. Kambhampati.
Planning for serendipity. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 5300–5306, Sept 2015.

[2] P.-P. Grassé. La reconstruction du nid et les
coordinations interindividuelles chezbellicositermes
natalensis etcubitermes sp. la théorie de la stigmergie:
Essai d’interprétation du comportement des termites
constructeurs. Insectes sociaux, 6(1):41–80, 1959.

[3] K. Talamadupula, G. Briggs, T. Chakraborti,
M. Scheutz, and S. Kambhampati. Coordination in
human-robot teams using mental modeling and plan
recognition. In 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
2957–2962, Sept 2014.

Vocabulary Alignment in Open and Heterogeneous
Interactions: is it Possible?

Work in Progress

Paula Chocron
IIIA-CSIC

Universitat Autònoma de Barcelona
Bellaterra, Catalonia, Spain
pchocron@iiia.csic.es

ABSTRACT
Addressing the problem of vocabulary heterogeneity is nec-
essary for the common understanding of agents that use
different languages, and therefore crucial for the success of
multi-agent systems that act jointly by communicating. In
recent work, we have studied this problem from a new per-
spective, that does not require external knowledge or any
previously shared meta-language. Instead, we assume that
agents share the knowledge of how to perform the tasks for
which they need to collaborate, and we show how they can
learn alignments from repeated interaction. Importantly, in
that work we require agents to share the complete knowledge
of the task. In this extended abstract we present a sketch of
an extension that would allow to consider, in a meaningful
way, differences between the agents’ specifications. To this
aim, we propose a new kind of protocols with constraints
that have weights to represent a punishment received when
they are violated.

1. VOCABULARY ALIGNMENT FROM THE
EXPERIENCE OF INTERACTION

The problem of aligning the vocabularies of heterogeneous
agents to guarantee mutual understanding has been tackled
several times in the past two decades, in general from one
of two different perspectives. Some approaches [7, 4] con-
sider the existence of external contextual elements, such as
physical objects, that all agents perceive in common, and
explore how those can be used to explain the meaning of
words. A second group of techniques [5, 6] consider the sit-
uation, reasonable for agents that communicate remotely, in
which this kind of context is not available. They do so by
providing explicit ways of learning or agreeing on a com-
mon vocabulary (or alignment between vocabularies), that
can include argumentation techniques, explanations, or def-
initions. These techniques always require agents to share
a common meta-language. The question of how to com-
municate with heterogeneous interlocutors when neither a
physical context nor a meta-language are available remains
practically unexplored.

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

In recent work [1, 2, 3] we proposed a different approach,
where the alignment is performed considering only the con-
text given by the interactions in which agents engage. Agents
are assumed to share the knowledge of how to perform a
task, or, more concretely, the specification of an interac-
tion. As an example, consider an ordering drinks interac-
tion between an English speaking customer and an Italian
waiter. We assume that both agents know the dynamics of
the conversation (for example, that the customer can order
wine and/or beer, only if they are asked the question “what
would you like to drink?”, and that the waiter will ask for
the color if wine is ordered). However, the words that are
used are different (vino and birra instead of wine and beer).
In the cited work, we show how agents can progressively
learn which mappings lead to successful interactions from
the experience of performing the task. After several interac-
tions, agents converge to an alignment that they can use to
always succeed at ordering and delivering drinks with that
particular interlocutor.

In [3] the interactions are specified with open protocols
that define linear temporal logic (LTL) constraints about
what can be said. In this way, the ordering drinks scenario
could be specified with the following two protocols, where W
is the waiter, C is the customer (and PW ,PC their respec-
tive protocols), say : A×V (with A a set of agent names and
V a vocabulary) is a predicate such that say(a, v) is true if
a says v at a given time, and ♦,�, dare the LTL operators
that mean eventually, globally and next respectively.

PW = {♦ say(W, da bere),
� (dsay(C, birra)→ say(W, da bere)),
� (dsay(C, vino)→ say(W, da bere)),
� (say(C, vino)→ ♦ say(W, colore))}

PC = {♦ say(W, to drink),
� (dsay(C, beer)→ say(W, to drink)),
� (dsay(C,wine)→ say(W, to drink)),
� (say(C,wine)→ ♦ say(W, color))}

The approach for learning alignments from interactions is
simple. Agents maintain a confidence distribution that as-
signs a value to each mapping between a foreign word and a
word in their vocabulary. These values are updated accord-
ing to what agents observe in interactions. Briefly, when an
agent receives a word, it punishes all interpretations that
are not possible because they violate some constraint. For
example, if the customer receives colore right after saying
wine, it infers that it can not mean to drink. By interacting

repeatedly with different protocols, agents gradually learn
an alignment between their vocabularies.

Until now, we required agents to share the entire struc-
ture of the interactions they perform. We do so by defining a
notion of compatibility between protocols: two protocols are
compatible if they accept exactly the same interactions as
correct, modulo an alignment. Then, we require our agents
to have only pairs of protocols that are compatible under
one alignment. Of course, this raises an immediate ques-
tion: what can agents learn if they do not share the pro-
tocol specifications? The short answer is that, if the pro-
tocols differ significantly, they have nothing to learn, since
there is no alignment that is useful to perform the tasks to-
gether. If only some protocols differ, and in details, they can
still infer an alignment with the same technique (although
more slowly), since the learning method can automatically
fix things that were wrongly learned.

2. WEIGHTED PROTOCOLS
We now propose an approach that considers more care-

fully the question of whether agents can align their vocab-
ularies when their protocols are different. To this aim, we
introduce a new version of these protocols, in which each
constraint has a weight that represents a punishment re-
ceived when that constraint is violated. This punishment
can be interpreted, for example, as a way of expressing pref-
erences (heavier constraints are those that agents prefer not
to violate), or degrees of confidence on a constraint, when
there is uncertainty about the interaction context.

A weighted protocol over a vocabulary V and a set of
agents A is a set P of pairs 〈c, ρ〉, where c is a LTL con-
straint over instantiations of say : A× V , and ρ ∈ [0, 1]. As
an example, consider again the waiter and the customer.
Assume they have the same constraints as before with high
weight, but now the waiter also believes that the customer
should not order two different alcoholic beverages in one in-
teraction. This constraint, however, is less strict than the
others, since the waiter is willing to accept that behaviour
some times. The protocols would look as follows.

PW = {〈♦ say(W, da bere), 1〉,
〈� (dsay(C, birra)→ say(W, da bere)), 1〉,
〈� (dsay(C, vino)→ say(W, da bere)), 1〉,
〈� (say(C, vino)→ ♦ say(W, colore)), 1〉,
〈♦ say(C, birra)→ ¬♦ say(C, vino), 0.5〉}

PC = {♦ say(W, to drink), 1〉,
〈� (dsay(C, beer)→ say(W, to drink)), 1〉,
〈� (dsay(C,wine)→ say(W, to drink)), 1〉,
〈� (say(C,wine)→ ♦ say(W, color)), 1〉}

Since we do not require protocols to be compatible in any
way, there is no single correct alignment that agents need
to find. Instead, we can define a measure of adequacy of
an alignment to a pair of protocols, or to a set of pairs
of protocols. We propose a first approach to define this
measure. Given P1 and P2 over V1 and V2 respectively,
the adequacy of an alignment A between V1 and V2 can be
measured for P1 as follows. Consider an interaction i given
by a sequence of messages that agents have sent to each other
(formally, a sequence of pairs 〈agent, word〉). Let ρ(P2, i)
be the punishment for i in P2, this is, the added weight
of all violated constraints. Then let Poss(P2) be all the

interactions for which ρ(P2, i) = 0. Then the adequacy of
the alignment A for P1 is∑

i∈Poss(P2)
ρ(P1,A(i))

|Poss(P2)|
where A(i) is the translation of i via A. Notice that this
measure is unilateral, and the adequacy of A for P2 is not
necessarily the same in the other direction.

The second aspect to take into account is how agents up-
date their confidences in mappings between words from the
experience of interacting. A first simple approach uses the
punishment that would correspond to each interpretation.
Let ω(v′, v) be the previous confidence value an agent has
for the mapping between v and v′. Suppose a2 receives a
word v1 from a1 after interaction i. Then, for all v ∈ V2,

ω(v1, v) := ω(v1, v)− ρ(P1, i.〈a1, v〉)

where i.〈a1, v〉 is the interaction obtained by appending
the message v sent by a1 to i.

Research Questions.
Although we still need to work towards a stable frame-

work, we think there are interesting questions that could be
explored considering this kind of protocols, such as:

• What kind of updating strategies lead agents to their
most adequate alignment?

• How does the distribution of different constraints in
protocols affect the convergence to an alignment? And
the distribution of weights, or the frequency with which
each task is performed?

REFERENCES
[1] M. Atencia and M. Schorlemmer. An interaction-based

approach to semantic alignment. Journal of Web
Semantics, 12-13:131–147, 2012.

[2] P. Chocron and M. Schorlemmer. Attuning ontology
alignments to semantically heterogeneous multi-agent
interactions. In ECAI 2016 - 22nd European
Conference on Artificial Intelligence, The Hague, The
Netherlands, pages 871–879, 2016.

[3] P. Chocron and M. Schorlemmer. Vocabulary
alignment in openly specified interactions. In
Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS
2017) (To appear), 2017.

[4] J. V. Diggelen, R. Beun, F. Dignum, R. M. V. Eijk,
and J. J. Meyer. Ontology negotiation: Goals,
requirements and implementation. Int. J.
Agent-Oriented Softw. Eng., 1(1):63–90, Apr. 2007.

[5] G. Santos, V. Tamma, T. R. Payne, and F. Grasso. A
dialogue protocol to support meaning negotiation.
(extended abstract). In Proceedings of the 2016
International Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’16, pages 1367–1368,
Richland, SC, 2016.

[6] N. Silva, G. I. Ipp, and P. Maio. An approach to
ontology mapping negotiation. In Proceedings of the
Workshop on Integrating Ontologies, pages 54–60, 2005.

[7] L. Steels. The origins of ontologies and communication
conventions in multi-agent systems. Autonomous Agents
and Multi-Agent Systems, 1(2):169–194, Oct. 1998.

Talk-only Submission

Better Eager Than Lazy? How Agent Types Impact the Successfulness of Implicit Coordination

Thomas Bolander, Thorsten Engesser, Robert Mattmuller, Bernhard Nebel

Link – http://gki.informatik.uni-freiburg.de/papers/bolander-etal-dmap2016.pdf

http://gki.informatik.uni-freiburg.de/papers/bolander-etal-dmap2016.pdf

Talk-only Submission

A Bayesian Approach to Norm Identification

Stephen Cranefield, Felipe Meneguzzi, Nir Oren, Bastin Tony Roy Savarimuthu

Link – http://ebooks.iospress.nl/volumearticle/44807

http://ebooks.iospress.nl/volumearticle/44807

