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Abstract
Model-reconciliation explanation is a popular
framework for generating explanations for plan-
ning problems. While the framework has been
extended to multiple settings since its introduc-
tion for classical planning problems, there is lit-
tle agreement on the computational complexity of
generating minimal model reconciliation explana-
tions in the basic setting. In this paper, we address
this lacuna by introducing a decision-version of the
model-reconciliation explanation generation prob-
lem and we show that it is ΣP

2 -complete.

1 Introduction
The problem of generating intuitive and concise explanations
for plans generated by AI agents has been receiving a lot of
attention in recent years [Hoffmann and Magazzeni, 2019;
Fox et al., 2017; Chakraborti et al., 2020]. Model recon-
ciliation [Sreedharan et al., 2021] is an explanation genera-
tion framework popular in planning that frames explanation
as a process of bringing human’s expectation about the robot
closer to the robot’s behavior by updating their beliefs about
the robot model, i.e., the human’s theory of mind about the
robot. While the original work does present a clear defini-
tion of the central explanatory challenge, namely, identify-
ing a set of model updates of minimal length, we are un-
aware of any works that successfully establish the computa-
tional complexity of this problem. This is particularly unfor-
tunate since solution strategies for model-reconciliation ex-
planation tend to rely on extremely general, but computation-
ally expensive model-space search. An exact characteriza-
tion of the complexity of the problem could help us deter-
mine whether such methods are truly warranted in the case of
model-reconciliation explanation.

In this paper, we focus on the basic problem studied by
Chakraborti et al. [2017]. We formalize a decision-version of
the minimal explanation problem studied there and show that
this decision problem is in fact Σp

2-complete. The proof will
focus on mapping the explanation problem to that of estab-
lishing the satisfiability of a particular subclass of quantified
boolean formulas. Specifically, one where the quantification
is restricted to a set of existentially quantified variables fol-
lowed by a set of universally quantified variables. The re-

duction for the membership proof will leverage the univer-
sal quantification in the formula to capture the optimality test
that is a central part of the explanation generation problem
and the existentially quantified variables to capture the expla-
nation. While in the case of the hardness proof, we will use
the optimality test to capture the universal quantification and
the explanation to capture the existential one.

2 Background
We start by providing basic definitions for planning problems
and model-reconciliation and will end the section by provid-
ing a brief introduction to some of the relevant complexity
classes we will be considering in this paper.

2.1 Classical Planning
We will focus on deterministic, goal-directed planning
problems represented in the STRIPS planning problem
formalism [Geffner and Bonet, 2013]. Specifically a
STRIPS planning problem (henceforth referred to as plan-
ning model) may be formally represented by a tuple M =
⟨FM, AM, δM, IM, GM⟩, where FM is a set of proposition
fluents that define the state space associated with the planning
problem (i.e., SM = 2F

M
); AM is a set of action names;

δM = ⟨preM+ , preM− , addM, delM⟩ provides the functions
that map a given action name to its positive precondition, neg-
ative precondition, add effects and delete effects, such that

preM+ : A→ 2F
M

addM : A→ 2F
M

preM− : A→ 2F
M

delM : A→ 2F
M

Note that when we refer to an “action” we usually mean
its name a ∈ AM, not its precondition and effect tuple
(preM+ (a), preM− (a), addM(a), delM(a)). IM ∈ SM is
the initial state from which the agent is trying to achieve
the goal; and GM ⊆ FM is the goal specification, where
SM
G = {s ∈ SM | s ⊇ GM} is the set of goal states.
An action a ∈ AM is called executable in a state s ∈ SM

when its preconditions are satisfied by the current state, for-
mally represented by exe(a, s,M) = preM+ (a) ⊆ s and s ∩
preM− (a) = ∅. The effect of executing an action is repre-
sented by the function γ(a, s,M) defined as:

=

{
(s \ delM(a)) ∪ addM(a), if exe(a, s,M) = true
undefined otherwise



Executability of sequences of actions is defined by subse-
quent action application.

The functions exe and γ take a model M as an additional
parameter. The reason for this is that we will make changes
to specific actions and thus require to consider action exe-
cutability and its state transition function in different models.

A (possibly empty) sequence of actions π = ⟨a1, ..., ak⟩
is called a solution (also: plan) if it is executable in the ini-
tial state and results into a goal state, i.e., γ(π, IM,M) =
γ(ak, γ(...(γ(a1, I

M,M))...) ⊇ GM. Additionally, each
action and by extension the plan can be associated with a cost.
In this paper, we will specifically focus on models where each
action has a unit cost. Thus the cost of the plan, denoted by
C(π), is equal to the length of the plan. As usual for heuris-
tics, we use a star to denote optimality. A plan π∗ is said to
be a optimal for a model M, if

̸ ∃ π′ with γ(π′, IM,M) ⊇ GM, such that C(π′) < C(π∗).

We will use the notation C∗
M to capture the cost of an optimal

plan for M, i.e., the length of any shortest solution for M.

2.2 Encoding Planning Problems as SAT
A popular way of solving planning problems, particularly
when there exists a planning horizon (say T ), is to encode it
as propositional satisfiability problems (SAT) [Kautz et al.,
1996]. The most common encoding for the problem uses
propositional variables to capture whether a fluent is true at
each possible time step and whether an action was executed at
a time step. If M is the planning model, then we would have
T×(|FM|+|AM|) variables. The encoding has three impor-
tant classes for clauses (a) clauses that describe a component
of a model, i.e, initial state, goal, or action definition, (b) ex-
planatory frame axioms that enforce the requirement that any
change in variable value should correspond to the execution
of an action that could have caused the change and finally (c)
clauses to enforce the fact that concurrent action execution is
not possible. For example, let ai ∈ AM and p ∈ addM(a),
then as part of class (a) of clauses you would have clause of
the form ati ⇒ pt+1, for all time steps t. Similarly, an exam-
ple of an explanatory clause for p would be

¬pt ∧ pt+1 ⇒
∨

{ati|p ∈ addM(a)}

Effectively the clause asserts that p could only have been
turned true if one of these actions was executed. Finally, we
assert that the actions cannot be executed concurrently using
the clause ∧

a∈A

(at ⇒
∧

aj∈A,aj ̸=a

¬atj)

2.3 Model Reconciliation Explanation
The basic setting of model reconciliation explanation consists
of an autonomous agent (henceforth referred to as the Robot
R), using its model MR to come up with its plans. There is
a human observer, who assumes the robot uses a model MR

h
(i.e., the robot model assumed by the human) and is trying
to make sense of the robot’s plan. If the model MR

h is dif-
ferent from MR, the human may be confused by the robot’s
choice to follow some (robot’s) plan πR, as it might appear

suboptimal or even invalid (i.e., not executable or not achiev-
ing all goals) according to the model MR

h . Now the goal of
the model reconciliation is to resolve this confusion by pro-
viding the human with information on how the human’s as-
sumed model differs from the actual (robot) model.

Before we can formally define a model reconciliation ex-
planation problem, we need to define a model parameteriza-
tion function. We will follow a formalization slightly differ-
ent from those used by Chakraborti et al. [2017] and Sreedha-
ran et al. [2021] and define the formalization around a space
of models that share the same fluent space and action names.
Definition 1. Given a set of propositions F and a set of ac-
tion names A, let M(F,A) be the space of models that can be
defined over F and A, i.e., ∀M ∈ M(F,A) there exist δ, I ,
and G, such that M = ⟨F,A, δ, I,G⟩ is a planning model.

Now each model from a given model space can be uniquely
identified by a so-called model parameterization function,
based on the definition set up by Chakraborti et al. [2017].
Definition 2. The model parameterization function Γ :

M(F,A) → 2F
(F,A)

for a given space of models M(F,A),
maps a model from M(F,A) to a subset of propositions F (F,A)

(henceforth referred to as model parameters), where

F (F,A) = {init-has-f | f ∈ F} ∪ {goal-has-f | f ∈ F} ∪⋃
a∈A

{a-has-pos-prec-f, a-has-neg-prec-f,
a-has-add-f, a-has-del-f | f ∈ F}.

For a model M = ⟨FM, AM, δM, IM, GM⟩, the parame-
terization function Γ(M) is defined by

τMI = {init-has-f | f ∈ IM}
τMG = {goal-has-g | g ∈ GM}

τMpre+(a) = {a-has-pos-prec-f | f ∈ preM+ (a)}

τMpre−(a) = {a-has-neg-prec-f | f ∈ preM− (a)}

τMadd (a) = {a-has-add-f | f ∈ addM(a)}

τMdel (a) = {a-has-del-f | f ∈ delM(a)}

τMa = τMpre+(a) ∪ τ
M
pre−(a) ∪ τ

M
add (a) ∪ τ

M
del (a)

τMA =
⋃

a∈AM

τMa

Γ(M) = τMI ∪ τMG ∪ τMA
Note that Γ : M(F,A) → 2F

(F,A)

is a bijective mapping and
we will use the function Γ−1 to identify the model in M(F,A),
corresponding to a specific subset of F (F,A).
Definition 3. A model reconciliation explanation prob-
lem is defined by the tuple PMRE = ⟨MR,MR

h , π
∗
R⟩,

where MR = ⟨FMR

, AMR

, δM
R

, IM
R

, GMR⟩ is a model
that the robot is using in its decision-making; MR

h =

⟨FMR
h , AMR

h , IM
R
h , GMR

h ⟩ is the model the human observer
is associating with the robot; and π∗

R is the robot’s plan to be
explained. We demand that the models share the same fluents
and action names FMR

= FMR
h , AMR

= AMR
h , and that

π∗
R is optimal in the model MR.



Note that the requirement of using identical action names
and fluents is not a restriction. Using the same action name
set is a canonical requirement as we assume that the only con-
fusion that might exist is due to misaligned action definitions,
i.e., the human observer might not have a perfect understand-
ing of an action’s preconditions and effects, but does know
which action is being observed. Requiring identical fluent
sets is just for convenience, but not a restriction either, since
we can always define this shared/identical fluent set as the
union of the individual ones in case they are different.

Having defined the problem definition formally, we still
need to say what a solution to it is. Solutions to model recon-
ciliation explanation problems are called explanations, which
in turn are defined based on model updates, which we define
next. A model update updates the human’s model MR

h to
make it align with the actual model, i.e., the one of the robot,
MR. Formally, such updates are defined as follows:

Definition 4. For a given model reconciliation problem
PMRE = ⟨MR,MR

h , π
∗
R⟩, a model update is given by a

tuple E = ⟨ϵ+, ϵ−⟩, such that ϵ+ ⊆ Γ(MR) \ Γ(MR
h )

and ϵ− ⊆ Γ(MR
h ) \ Γ(MR). We will refer to the model

MR
h + E = Γ−1((Γ(MR

h ) \ ϵ−)∪ ϵ+) as the updated human
model that results from applying E .

We can now define solutions for model reconciliation ex-
planation problems. Note that we don’t require a “complete”
set of changes to the human model making it identical to the
actual one. It suffices to “explain” the robot’s plan, i.e., so
that this plan becomes optimal in the human’s model.

Definition 5. For a given model reconciliation explanation
problem PMRE = ⟨MR,MR

h , π
∗
R⟩, a model update E =

⟨ϵ+, ϵ−⟩ is considered to be a valid explanation if the plan
π∗
R is an optimal plan in MR

h + E .

2.4 Relevant Complexity Classes
While many of the standard results related to classical plan-
ning tend to either fall into NP or PSPACE classes [Bylander,
1994], the problem studied in this paper focuses on a class
that is placed between these classes.

One way to view NP problems, is in terms of the existence
of a witness or certificate that can be verified in polynomial
time. Following Definition 2.1 by Arora and Barak [2009], a
language L is said to be in NP if

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|)

such that M(x, u) = 1,

where M is a polynomial time Turing machine, p a polyno-
mial and u is the witness. On the other hand, a language L is
said to be in Σp

2
[Arora and Barak, 2009, Definition 5.1] if

x ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|x|) ∀v ∈ {0, 1}p(|x|)

such that M(x, u, v) = 1,

where M is again a polynomial time Turing machine. An-
other way to view Σp

2 is in terms of oracle machines.
The canonical Σp

2-complete problem is the special subclass
of quantified boolean formula called QSAT2 [Stockmeyer,

1976], where QSAT2 corresponds to the question of satisfi-
ability of a formula of the form

∃X∀Y ϕ,

where X and Y are vectors over boolean variables and ϕ is
a propositional formula defined over X and Y . Note that per
Theorem 4.1 (1) from Stockmeyer [1976], QSAT2 is com-
plete for Σp

2 regardless of the form. This fact is exploited
in our membership proof as we map the PMRE to a quanti-
fied boolean formula which is not necessarily in either CNF
or DNF form. In fact, in the formula used for the mem-
bership proof, while ϕ1(X) and ϕ3(X,Z) are in CNF, the
subformula ¬ϕ3(X,Y ) is a negation. Additionally, Theo-
rem 4.1 (2) by Stockmeyer [1976] also shows that the subset
QSAT2 ∩ 3-DNF is also complete for Σp

2. So in our hardness
proof rather than reducing arbitrary quantified boolean for-
mulas into a PMRE , we focus on reducing an instance from
the set QSAT2 ∩ 3-DNF.

The polynomial hierarchy (PH) is formed by taking the
union over the various classes of the form ΣP

i , where each
class ΣP

i is defined in the above form with i alternating ex-
istential and universal quantifiers (starting with an existential
quantifier as in the case of ΣP

2 ). Finally, the PSPACE com-
plexity class, covers all the problems that can be solved by
a Turing machine with polynomial space [Arora and Barak,
2009]. A PSPACE-complete problem is the satisfiability of a
TQBF or True Quantified Boolean Formula, where no restric-
tion is placed on the quantification over the variables. While
it is known that PH ⊆ PSPACE holds, the problem of estab-
lishing PH ̸= PSPACE remains an important open problem
(or question, as it’s not known yet).

3 Complexity Results for Model
Reconciliation Explanation Problems

We are interested in the computational complexity of solv-
ing model reconciliation explanation problems. It is however
rather obvious that checking whether any solution exists is a
trivial problem:

Proposition 1. Let PMRE = ⟨MR,MR
h , π

∗
R⟩ be a model rec-

onciliation explanation problem. The question whether there
exists a valid explanation can be decided in constant time.
More precisely, the answer is always yes.

The reason why the answer is always yes is because we
could always simply compute the difference between the sets
Γ(MR

h ) and Γ(MR) and present these differences as expla-
nation. (And we know that this is always possible, so we
don’t need to do so just to decide whether this explanation
exists – it always does.) Thus, computing such an explana-
tion is harder than deciding whether one exists; computing it
is a linear problem. This corresponds to the class of explana-
tion called model patch explanation previously studied in the
literature [Chakraborti et al., 2017].

While model patch explanations are technically correct,
they might in practice not be the best explanations as it would
involve resolving differences that are irrelevant, in that they
didn’t cause confusion. Recall that the reason for the neces-
sity of explaining something is that the robot’s plan either



isn’t even a plan at all in the human’s model, or just not op-
timal. So any explanation should restrict to finding reasons
pointing to any of these facts.

Thus, what we are interested in is finding a minimal ex-
planation, i.e., we want to present an explanation to the hu-
man user that involves the fewest possible number of model
changes so that the observed plan is an optimal solution in
his/her model – even if there are still some differences to the
robot’s model (of which the human would then still be un-
aware of). Such explanations have been referred to as mini-
mally complete explanations [Chakraborti et al., 2017].

To turn this optimization problem into a decision problem,
we introduce (as it is usually done) an additional parameter
representing the criterion that’s being optimized – in our case
the number of performed changes. Formally:

Definition 6. For a given model reconciliation explanation
problem PMRE = ⟨MR,MR

h , π
∗
R⟩, we define the optimal

model reconciliation explanation decision problem as:

Given PMRE and a natural number k ∈ N∪{0}, does there
exist a valid explanation E = ⟨ϵ+, ϵ−⟩ for PMRE, such that
|ϵ+|+ |ϵ−| = k? (We call this MRE-k.)

We are going to show that the problem is Σp
2-complete,

which we show in the next two sections, one showing mem-
bership, the other showing hardness.

To prove the computational complexity, we will focus on
the canonical Σp

2 complete problem called QSAT2 [Stock-
meyer, 1976], where QSAT2 corresponds to the question of
satisfiability of a formula of the form ∃X∀Y ϕ, where X and
Y are disjoint sets of boolean variables and ϕ is a proposi-
tional formula defined over X and Y . When we focus on
specific forms propositional formula, say 3-DNF, we will de-
note it as QSAT2 ∩ 3-DNF.

3.1 Membership Proof
Our first task would be to establish the fact that MRE-k is in
a fact a member of the complexity class Σp

2. We will do so by
reducing the problem into a QSAT2 problem. In particular, by
mapping a model reconciliation explanation problem PMRE =
⟨MR,MR

h , π
∗
R⟩ into QSAT2 of the form

∃X,Zϕ1(X) ∧ ¬(∃Y ϕ2(X,Y )) ∧ ϕ3(X,Z),

such that |X| = k·|E+∪E−|, whereE+ = Γ(MR)\Γ(MR
h )

andE− = Γ(MR
h )\Γ(MR) are the set of propositional vari-

ables that will capture the possible individual model updates,
Y corresponds to the propositional variables required to en-
code a planning problem where the maximum plan length is
limited to |π∗

R| − 1 that will be used to capture the possi-
ble shorter plans and Z includes the propositional variables
required to encode a planning problem where the maximum
plan length is limited to |π∗

R| which will be used to encode the
validity of π∗

R. Following the variables, ϕ1(X) is a CNF for-
mula that enforces the fact that only explanations of size k are
possible, ϕ2(X,Y ) is a CNF formula that encodes whether
given the explanation a plan of length |π∗

R|−1 can achieve the
goal in the updated model and finally, ϕ3(X,Z) is a CNF for-
mula that encodes whether given the explanation π∗

R is valid
in the updated model. Applying the negation and moving the

quantification upfront, we get the pre-nex QSAT2 form

∃X,Z∀Y ϕ1(X) ∧ ¬ϕ2(X,Y ) ∧ ϕ3(X,Z)

Now the important parts of this compilation are encoding the
enforcement of explanation length (through ϕ1(X)) and en-
coding planning models in such a way that they can reflect the
effects of model updates captured by a particular instantiation
of X variables (used in ϕ2(X,Y ) and ϕ3(X,Z).

Encoding Explanation Length
The variable set X consists of k propositional variables for
each individual model update, i.e,

X =
⋃

τi∈E+∪E−

{τ1i , ..., τki },

where each τmi can be thought of as capturing the fact that the
model update τi is applied at step m. Now our requirement
is to enforce that only a single model update is applied at a
given step. This is exactly done by ϕ1(X), where ϕ1(X) is a
conjunction of clauses of the form

τmi ⇒
∧

τj∈E+∪E−∧τj ̸=τ1

¬τmj .

ϕ1(X) will contain a clause for every pair of model updates
τi, τj ∈ E+ ∪ E− and every step m ∈ {1, ..., k}). Now
ϕ1(X) cannot be true if for any step more than one model
update variable is true.

Encoding Planning Models Conditioned on Model
Updates
Now the second part of the encoding requires that we have
a way to capture the horizon-limited planning problem, that
reflects the model updates captured by a given instantiation
of X . This will be used in both ϕ2(X,Y ) and ϕ3(X,Z).
The encoding will be based on the planning-as-SAT encoding
discussed Section 2.2. Let ϕMT be the unmodified original
SAT encoding (in CNF form) corresponding to a model M =
⟨F,A, δ, I,G⟩ for a planning horizon T .

To allow for the model update, we will start with setting the
encoding to be equal to the human model (ϕP

MRE

T = ϕ
MR

h

T ).
We first augment the model component clauses in this model.
Specifically, let ψ be a clause corresponding to a model com-
ponent that is part of the human model but not part of the
robot model, and let the corresponding model parameter be
τj ∈ E−. Then we replace ψ in ϕP

MRE

T with a clause

(¬τ1j ∧ ... ∧ ¬τkj ) ⇒ ψ,

This clause captures the fact that if the model component is
not removed in the k explanation steps, then the model com-
ponent should be considered when coming up with the plan.
Note that this is still a clause as conjunction is on the left side
of the implication.

Let ψ′ be a clause corresponding to a model component
that is part of the robot model but missing from the human
model, with a corresponding model parameter be τj ∈ E+.
We add a conjunction of the form given below to ϕP

MRE

T

(τ1j ⇒ ψ′) ∧ ... ∧ (τkj ⇒ ψ′)



That is, the model component needs to hold if the correspond-
ing explanation is provided at any explanation step.

Now we will remove all the original explanatory frame ax-
ioms and add one that covers action definitions from both
models, i.e., for ever fluent f ∈ FMR

and each time step m
up to T−1 we add a clause of the form ¬fm∧fm+1 ⇒ Af

add ,

where Af
add = {a | a ∈ AMR ∧ f ∈ addMR

∪ addMR
h }.

We can similarly add an explanatory fluent for the deletes.
Now to account for the explanation, we will add new

clauses that will ensure that to use any previously missing
adds or deletes at a time step, the respective model update
should be performed at some explanation step or not per-
formed at all if it was an effect that was not part of the robot
model. Finally we leave the action exclusion clauses unmod-
ified in the new model ϕP

MRE

T . This is sufficient as the human,
robot and updated model all share the same action names. We
can now see that this encoding is equivalent to the updated
model.
Proposition 2. Let x⃗ be a specific instantiation of the vari-
able X corresponding to a model update E = ⟨ϵ+, ϵ−⟩, such
that ϵ+ = {τ1, ..., τr}, ϵ− = {τ̄1, ..., τ̄p} and |ϵ+|+ |ϵ−| = k.
Now let ϕx⃗(X) be a logical conjunction of the form

x1τ1 ∧ ... ∧ x
r
τr ∧ x

r+1
τ̄1 ∧ ... ∧ xkτ̄p

Now for the combined logical formula

ϕx⃗(X) ∧ ϕ1(X) ∧ ϕP
MRE

T ,

every instantiation of propositional variables that satisfies the
formula corresponds to a plan for MR

h + E .
This fact should be obvious from the validity of the origi-

nal encoding. Any differences in the encoding are only those
related to the explanations. For example, in the new encod-
ing the enforcement of a positive precondition f for an ac-
tion al at time step m that could be removed by a model up-
date is going to be, ¬τ1 ∧ ...¬τk ⇒ (aml ⇒ fm−1), where
τ = al-has-pos-prec-f . So if τ i is set true at any of the k sets
then the precondition needs no longer to be satisfied.

We get ϕ2(X,Y ) by using the ϕP
MRE

T encoding but for time
horizon |π∗

R|−1 (the encoding also includes NOOP actions to
allow for shorter plans) and we define ϕ3(X,Z) to be equal
to

ϕP
MRE

|π∗
R| (X,Z) ∧ ϕπ∗

R
,

where ϕπ∗
R
= a11∧...a

|π∗
R|

|π∗
R|, a

i
i is the variable in Z correspond-

ing to the ith action in plan π∗
R for time step i.

Lemma 1. A given problem PMRE has a k-sized explanation
if and only if

∃X,Z∀Y ϕ1(X) ∧ ¬ϕ2(X,Y ) ∧ ϕ3(X,Z)
is satisfiable.

This follows directly from the construction and Proposi-
tion 2. The formula is only satisfied if there exists an in-
stantiation of X corresponding to an explanation of length k
(enforced by ϕ1(X)) that allows for the validity of the cur-
rent plan (enforced by ϕ3(X,Z)) and doesn’t allow for any
shorter plans (enforced by ¬ϕ2(X,Y )). This leads us to:
Theorem 1. MRE-k is in Σp

2

3.2 Hardness Proof
To prove that the problem MRE-k is Σp

2-hard, we will pro-
vide a polynomial reduction of a QSAT2 ∩ 3-DNF instance
(which has been shown to be Σp

2-complete [Stockmeyer,
1976]) into a k-bounded Model Reconciliation Explanation
problem PMRE thus solving MRE-k. To present the reduc-
tion, consider an arbitrary QSAT2∩3-DNF instance ∃X∀Y ϕ,
where ϕ is a disjunction consisting of N disjuncts (i.e., con-
junctions) denoted as C1, .., CN (each of size 3 as ϕ is in
3-DNF) defined over the propositions in X and Y .

As mentioned earlier, we will map the problem of check-
ing the satisfiability of a propositional formula over a univer-
sal quantification to that of an optimality check. In particular,
we will construct a planning model where the plan space cov-
ers the space of all possible instantiations of the universally
quantified variables. We then establish the satisfiability of the
universally quantified formula by showing that no plan (i.e., a
specific instantiation of the variables) can satisfy the negation
of the formula. This follows from the fact that

∀Y ϕ ⇐⇒ ¬(∃Y ¬ϕ)
Though in our case, there is not only a universally quantified
variable set Y but an existentially quantified variable set X.
We will map this existentially quantified variable set into the
initial state of the problem and will allow the model recon-
ciliation problem to select any possible instantiation of X as
part of the explanation. Thus mapping the problem to

∃X∀Y ϕ ⇐⇒ ∃X¬(∃Y ¬ϕ)
That is, a valid explanation will show that there exists an ini-
tial state for which there exists no shorter action sequence
that can satisfy the goal ¬ϕ. We will also add some addi-
tional constraints in the two models that will form our model
reconciliation explanation problem PMRE

QSAT to ensure that the
plan being explained will be optimal after all the differences
between the models have been resolved.

The exact construction of the PMRE
QSAT problem is given be-

low. Let us first start by defining the fluent set and the action
names. Let the fluent set F be defined as

F = FX ∪ FY ∪ FN ∪ FG ∪ FD1 ∪ FD2 ∪ FS ,

where FX and FY are the sets of fluents corresponding to
X and Y , respectively (i.e., we could just set FX = X and
FY = Y ), FN consists of a fluent per disjunct in ϕ (i.e., we
could just set FN = {C1, . . . , CN}), FG = {g} contains
a single goal fluent to be used by the models, FD1

is a set of
dummy fluents such that |FD1

| = |X|+1, FD2
is a second set

of dummy fluents such that |FD2
| = |Y |+N + 1 and FS =

{ps} is a staging variable used to enforce action ordering.
Now the action namesA to be shared between the two models
would be such that |A| = |Y |+ 3 · |FN |+ |FD2 |+ |FD1 |+
1, where we would have an action for each of the fluents in
the corresponding fluent subsets Y and FD2 , and an action
for each conjunction of the propositional formula ϕ. Finally,
there are |FD1

|+1 “goal actions”, where there are |FD1
| goal

actions by which the goal can be established if ¬ϕ can be
achieved and there is one goal action to be used as part of π.
Specifically, we will represent the action names as follows

A = AY ∪A¬ϕ ∪A(G,¬ϕ) ∪AD2
∪A(G,D2)



Now we will define a model reconciliation explanation
problem PMRE

QSAT = ⟨M1,M2, π⟩. The models are defined
as M1 = ⟨F,A, δ, IM1 , G⟩ and M2 = ⟨F,A, δ, IM2 , G⟩,
where IM1 = X ∪ FS and IM2 = FD1

∪ FS . Note that the
models only differ in their initial states.

We will now go on defining each of the actions. Starting
with AY , an action aiY ∈ AY (for a variable yi ∈ Y ) is
defined by pre+(a

i
Y ) = FS , pre−(a

i
Y ) = ∅, add (aiY ) =

{f iY }, and del (aiY ) = ∅. That is, the action definition for
aiY is empty but for a single add effect that sets the fluent cor-
responding to the variable yi true (f iY ∈ FY ) and a positive
precondition that requires the staging variable to be true.

Next come the actions in A¬ϕ, which will help us test
whether for a given instantiation of X and Y , the negation
of the propositional formula ¬ϕ(x, y) is satisfiable. Note
that when we negate the 3-DNF ϕ, we obtain a 3-CNF ¬ϕ,
where each (ith) conjunctionCi gets turned into a disjunction
(clause) C ′

i given by {pi1, pi2, pi3} (where the literals got in-
verted, i.e., switched from negated to positive and vice versa).
Now for each literal in C ′

i we will define an action ai,j¬ϕ,
1 ≤ j ≤ 3, as follows.

• if pij is positive we have:

pre+(a
i,j
¬ϕ) = {f jX∪Y }, pre−(a

i,j
¬ϕ) = ∅,

add (ai,j¬ϕ) = {f iN}, and del (ai,j¬ϕ) = FS

• and if pij is negative then we define it as

pre+(a
i,j
¬ϕ) = ∅, pre−(a

i,j
¬ϕ) = {f jX∪Y },

add (ai,j¬ϕ) = {f iN}, and del (ai,j¬ϕ) = FS ,

where f iN ∈ FN is an indicator variable identifying whether
the clause C ′

i is satisfied and f jX∪Y ∈ FX ∪ FY is the flu-
ent corresponding to the proposition. That is, the fluent be-
comes a positive precondition if it was a positive literal in the
clause (resulting from negating the conjunction), otherwise it
becomes a negative precondition. If at least one of the literals
in the clause is satisfied the clause is satisfied (captured by
the add effect). Additionally, the action deletes the staging
variable ps. This allows us to ensure that no action from AY

can be performed after executing an action from the set A¬ϕ.
Now one way for the goal g to be satisfied would be to

satisfy all the negated clauses in ϕ, which is captured by
the set of actions A(G,¬ϕ) = {a1(G,¬ϕ), ..., a

|X|+1
(G,¬ϕ)}. Here

we have a possible goal action for each fluent in FD1
. The

actions here are defined such that pre+(a
i
(G,¬ϕ)) = FN ∪

{f iD1
}, pre−(a

i
(G,¬ϕ)) = ∅, add (ai(G,¬ϕ)) = {g}, and

del (ai(G,¬ϕ)) = ∅, where f iD1
∈ FD1

. As we will see, once
we complete the mapping of the satisfaction problem into the
explanation problem, all the shorter action sequences that the
explanation would need to invalidate would use these goal
generating actions.

The optimal plan π that needs to be explained is given
by π = ⟨a1D2

, ..., a
|FD2

|
D2

, a(G,D2)⟩. This plan contains all

the actions that are part of AD2 = {a1D2
, ..., a

|FD2
|

D2
} and

A(G,D2) = {a(G,D2)}, such that

• pre+(a
i
D2

) = pre−(a
i
D2

) = ∅, and for all f iD2
∈ FD2 :

add (aiD2
) = {f iD2

}, del (aiD2
) = ∅, and

• pre+(a(G,D2)) = FD2
, pre−(a(G,D2)) = ∅,

add (a(G,D2)) = {g}, and del (a(G,D2)) = ∅.
This brings us to the important properties (captured by the
following propositions and lemmata) that will let us establish
the soundness of the reduction.
Proposition 3. π is optimal in M1.

In M1 none of the variables in FD1
are true, neither can

any action turn it true. Thus none of the goal actions in
A(G,¬ϕ) can be used, leaving the model to use all actions in
π to achieve the goal.
Proposition 4. One can reach a state that captures (in terms
of the truth values of FY ) any possible instantiation of the
variables Y by a plan of length less than |π| −N − 1.

The proposition follows directly given the size of |AY | and
the fact that the actions in this set do not have preconditions.
Proposition 5. Any possible instantiation of the variables
X can be captured by the initial state of the updated model
formed from a model update of size |X|.

Note that the model update takes the form of ⟨ϵ+, ϵ−⟩, such
that ϵ+ ⊆ X and ϵ− ⊆ FD1 . Thus one can create an expla-
nation that sets some subset of X ′ ⊆ X true, by making ϵ+
equal to that subset (in terms of FX ) and selecting a subset of
FD1

as ϵ−, such that |ϵ−| = |X|−|ϵ+|. Since |FD1
| = |X|+1

and |ϵ−| is a non-negative number upper-bounded by |X|, we
can always find a subset of FD1

of size |X| − |ϵ+|.
Proposition 6. For a model update E = ⟨ϵ+, ϵ−⟩, where
Xϵ+ contains the values from X corresponding to the up-
date, there exists an action sequence π′ that is a valid plan in
M2 + E such that |π′| < |π|, if and only if there exists some
instantiation of variables Y (say Y π′

), such that for Xϵ+ and
Y π′

it satisfies ¬ϕ (denoted as (Xϵ+ , Y π′
) |= ¬ϕ).

This follows directly from the fact that an action sequence
of length less than |π| can only satisfy the goal by using an
action inA¬ϕ

G , which requires satisfying all the clauses in ¬ϕ.
Similarly all instantiations of Y and testing validity of ¬ϕ can
be done in less than |π| steps, which brings us to the lemma:
Lemma 2. For the model reconciliation explanation problem
PMRE

QSAT = ⟨M1,M2, π⟩, there exists a valid explanation of
size |X| if and only if the corresponding QSAT2 ∃X∀Y ϕ is
satisfiable.

Proof. This lemma can be directly built from the previous
three propositions. If there exists a valid explanation of size
|X| that means no plan of size less than |π| is valid, that
means there exists an instantiation of variables X (say XE ),
such that for all instantiations Y ′ of variables Y , we have

(XE , Y ′) ̸|= ¬ϕ
which means, we have for all Y ′ of Y

(XE , Y ′) |= ϕ

Similarly if the QSAT2 formula was not satisfiable, then for
every XE we should have at least one instantiation Y ′ for



which (XE , Y ′) |= ¬ϕ. In the updated model we can now
construct a plan that corresponds to Y ′ and the evaluation of
¬ϕ for Y ′ which should satisfy an action in A¬ϕ

G .

Which bring us to the theorem.
Theorem 2. MRE-k is Σp

2-hard
This theorem follows directly from Lemma 2 and the fact

that QSAT2∩3-DNF is Σp
2-complete. Finally, Theorem 1 and

Theorem 2 brings us to our central result.
Theorem 3. MRE-k is Σp

2-complete

4 Related Work
While the complexity of the original model-reconciliation
explanation has gone unexplored, there are complexity re-
sults from related problems that give us some clues about
the actual complexity. For one, Sreedharan et al. [2020],
showed PSPACE-completeness for providing a plan and a set
of model updates such that the plan is valid in both the robot
and the updated human model. Of course, here there is the
additional complexity of identifying the plan and the prob-
lem overlooks the complexity of establishing the optimality,
a central concern in the original model reconciliation formu-
lation [Chakraborti et al., 2017]. On the other hand, Lin and
Bercher [2021] established that the complexity of updating
the model (with any or a minimal number of changes) ensur-
ing the validity of a given plan is an NP-complete problem
(for most cases, only a few are in P). However, they do not
constrain the model updates to those that align with the tar-
get robot model directly, as this is only implicitly provided
via the plan that’s supposed to be valid. Finally, Vasileiou
et al. [2021], looked at a variant of model reconciliation that
is framed as the problem of finding the shortest logical sup-
port of a given propositional formula in the context where
the human and robot model are represented as propositional
knowledge bases. They discuss a possible membership of this
problem in the Σp

2 class, but unfortunately, again the problem
they define is different from the one studied by Chakraborti et
al. [2017]. Vasileiou et al. [2021] looked at a case where there
exists a knowledge base associated with the system KBa and
one associated with the human KBh and there is a logical
formula ϕ that needs to be explained such that KBa |= ϕ and
KBh ̸|= ϕ. The explanation here takes the form of a support
ϵ ⊆ KBa ∧ KBh such that KBh ∧ ϵ |= ϕ (as discussed
by Vasileiou et al. [2021] in Definition 7). Given the gen-
erality of this formulation, one could map explanations for
a classical planning problem partially into this framework,
however it is not the exact problem studied by Chakraborti et
al. [2017].

The first point to note is the fact that the explanation here
doesn’t support removal of rules from the human’s knowledge
base, a key form of model update discussed by Chakraborti et
al. [2017]. While the definition does not allow for such a
change, their algorithm (Algorithm 2) does include an ad-hoc
test for satisfiability ofKBa∧KBh and the algorithm allows
for the removal of formulas from KBh if the conjunction is
unsatisfiable. But this doesn’t cover all the changes that are
supported by Chakraborti et al. [2017]. For example, con-
sider a case when an action a has an additional add effect e

in the human knowledge base, which manifests in the form of
two rules, a rule of the form

ai ⇒ ei

and a rule in the explanatory frame axiom that says a is a
possible action that can satisfy the transition from ¬e∗ to e∗.
In this case, the problem encoding of length n (n being the
length of the plan being explained), the formulaKBa∧KBh

needs not be unsatisfiable, especially if the plan being ex-
plained is not using a or e. However this rule could prevent
some ϕ, say there doesn’t exist a plan of length shorter than
n, from being entailed without its removal. For example, let
there be an action a2 that directly sets the goal true if e is satis-
fied and there are no actions in KBa that could have satisfied
e. Now without removing this additional add effect there will
always be a shorter plan. Unfortunately, after the first satisfia-
bility test Vasileiou et al. [2021] don’t provide any other way
of removing rules from the human’s knowledge base.

Next the paper breaks down the problem of explaining op-
timality of the plan into two separate problems. First it ex-
plains the validity and then it explains optimality. For ex-
plaining validity they mention adding the plan and the goal
as constraints into the planning model as additional clauses
and then testing for satisfiability. If the encoding is unsatisfi-
able, the authors mention that they “add the missing actions
as part of the explanation” [Vasileiou et al., 2021, page 5].
If this means they add all missing information in KBh for
actions in the plan, this will already result in more informa-
tion that the one considered in the original model reconcilia-
tion work [Chakraborti et al., 2017]. However, if they have
some procedure to find the minimal information needed to be
added to ensure optimality, this could still result in longer ex-
planations. This is because choices made to ensure validity
has an impact on the information needed to be provided to
ensure optimality. As such the problem of finding model up-
dates to ensure validity and optimality cannot be separated.
For example, consider a case where the plan is invalid be-
cause a precondition for an action is unsatisfied in the human
model. Now assume there are two possible minimal updates
to ensure validity. One could say that the unsatisfied precon-
dition is not part of that action in the knowledge base KBh

or there exists a previously missing effect of an earlier action
that can satisfy this precondition (though it’s not needed in
KBa). However one could build the rest of the model in such
a way that adding the add effect information would result in
other shorter plans being feasible. Say there are actions which
can satisfy the goal directly whose only precondition in KBh

is satisfied by this effect, while those actions have extra pre-
conditions in KBa. This means the choice to introduce the
add effect could make the explanation longer. Similarly we
can create domains where the choice to remove the precondi-
tion would result in longer explanations.

5 Conclusion
One of the immediate points of interest is the comparison of
the complexity of model-reconciliation with the complexity
of classical planning. When no information about the prob-
lem to solve is given, worst case complexity is PSPACE-
complete [Bylander, 1994]. Unless the polynomial hierarchy



collapses the problem of model reconciliation is thus easier
than simple plan existence. This comparison is however not
perfectly fair since in model reconciliation we have a plan
given as an input thus bounding possible changes. While
bounded plan existence is still PSPACE-complete since plan
length can be bounded logarithmically, it turns NP-complete
when encoded unarily (thus simulating the situation of model
reconciliation where the bound is not given as number but ex-
plicitly via an input plan). Model reconciliation is thus harder
than the respective bounded plan existence problem unless
the polynomial hierarchy collapses.

Another consequence of the proof is the existence of an al-
ternate problem formulation for generating a minimally com-
plete explanation, namely by mapping it to QSAT2 of increas-
ing explanation length. This means one could use fast quan-
tified boolean formula solvers to generate such explanations.
One of the future directions for the work may be to investigate
whether the use of this compilation provides an advantage
over the A∗ model space search proposed by Chakraborti et
al. [2017]. Going forward it may also be worth investigating
special cases of the model reconciliation explanation (restric-
tions on the planning model) that might be more tractable and
consider the hardness of the various extensions of the model-
reconciliation framework like those discussed by Sreedharan
et al. [2018; 2019].

Another interesting direction of future work is generating
lies as formalized by Chakraborti and Kambhampati [2019],
which is also closely related to model reconciliation. In this
case, the objective of the model updates remains the same,
i.e., the robot is trying to ensure the plan is optimal in the
updated model, but the model-updates is no longer required
to be part of the robot’s true model.

Acknowledgments
This research is supported in part by ONR grants
N00014- 16-1-2892, N00014-18-1- 2442, N00014-18-1-
2840, N00014-9-1-2119, AFOSR grant FA9550-18-1-0067,
DARPA SAIL-ON grant W911NF19-2-0006 and a JP Mor-
gan AI Faculty Research grant.

References
[Arora and Barak, 2009] Sanjeev Arora and Boaz Barak.

Computational Complexity - A Modern Approach. Cam-
bridge University Press, 2009.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning. Artif. Intell.,
69(1-2):165–204, 1994.

[Chakraborti and Kambhampati, 2019] Tathagata
Chakraborti and Subbarao Kambhampati. (when)
can ai bots lie? In Proceedings of the 2019 AAAI/ACM
Conference on AI, Ethics, and Society, pages 53–59, 2019.

[Chakraborti et al., 2017] Tathagata Chakraborti, Sarath
Sreedharan, Yu Zhang, and Subbarao Kambhampati. Plan
explanations as model reconciliation: Moving beyond
explanation as soliloquy. In IJCAI 2017, pages 156–163.
IJCAI Organization, 2017.

[Chakraborti et al., 2020] Tathagata Chakraborti, Sarath
Sreedharan, and Subbarao Kambhampati. The emerging
landscape of explainable automated planning & decision
making. In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI 2020,
pages 4803–4811. IJCAI Organization, 2020.

[Fox et al., 2017] Maria Fox, Derek Long, and Daniele Mag-
azzeni. Explainable Planning. In IJCAI XAI Workshop,
pages 24–30. XAI, 2017.

[Geffner and Bonet, 2013] Hector Geffner and Blai Bonet. A
concise introduction to models and methods for automated
planning, volume 7 of Synthesis Lectures on Artificial In-
telligence and Machine Learning. Morgan & Claypool
Publishers, 2013.

[Hoffmann and Magazzeni, 2019] Jörg Hoffmann and
Daniele Magazzeni. Explainable AI planning (XAIP):
overview and the case of contrastive explanation (ex-
tended abstract). In Reasoning Web. Explainable Artificial
Intelligence, volume 11810 of Lecture Notes in Computer
Science, pages 277–282. Springer, 2019.

[Kautz et al., 1996] Henry A. Kautz, David A. McAllester,
and Bart Selman. Encoding plans in propositional logic.
In KR 96, pages 374–384. Morgan Kaufmann, 1996.

[Lin and Bercher, 2021] Songtuan Lin and Pascal Bercher.
Change the world – how hard can that be? on the com-
putational complexity of fixing planning models. In IJCAI
2021, pages 4152–4159. IJCAI Organization, 2021.

[Sreedharan et al., 2018] Sarath Sreedharan, Tathagata
Chakraborti, and Subbarao Kambhampati. Handling
model uncertainty and multiplicity in explanations via
model reconciliation. In ICAPS 2018, pages 518–526.
AAAI Press, 2018.

[Sreedharan et al., 2019] Sarath Sreedharan, Alberto Olmo
Hernandez, Aditya Prasad Mishra, and Subbarao Kamb-
hampati. Model-free model reconciliation. In IJCAI 2019,
pages 587–594. IJCAI Organization, 2019.

[Sreedharan et al., 2020] Sarath Sreedharan, Tathagata
Chakraborti, Christian Muise, and Subbarao Kambham-
pati. Expectation-aware planning: A unifying framework
for synthesizing and executing self-explaining plans for
human-aware planning. In AAAI 2020, pages 2518–2526.
AAAI Press, 2020.

[Sreedharan et al., 2021] Sarath Sreedharan, Tathagata
Chakraborti, and Subbarao Kambhampati. Founda-
tions of explanations as model reconciliation. Artificial
Intelligence, 301:103558, 2021.

[Stockmeyer, 1976] Larry J Stockmeyer. The polynomial-
time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976.

[Vasileiou et al., 2021] Stylianos Loukas Vasileiou, Alessan-
dro Previti, and William Yeoh. On exploiting hitting sets
for model reconciliation. In AAAI 2021, pages 6514–6521.
AAAI Press, 2021.


	Introduction
	Background
	Classical Planning
	Encoding Planning Problems as SAT
	Model Reconciliation Explanation
	Relevant Complexity Classes

	Complexity Results for Model Reconciliation Explanation Problems
	Membership Proof
	Encoding Explanation Length
	Encoding Planning Models Conditioned on Model Updates

	Hardness Proof

	Related Work
	Conclusion

