Motivation

- Accuracy ≠ explicability.
- How do Failures Look? Egregious Errors can result in
 1. Loss of Trust
 2. Safety issues
 3. Uphold societal biases
- Predictive parity / error rate balance / demographic parity does not consider the egregiousness of a mistake.

Representing Magnitude of Explicability

- Pairwise similarity between classes can be used to represent egregiousness of misclassifications.
 - Classification to classes semantically far away = Egregious mistakes
 - Classification to semantically close classes = Explicable mistakes

Obtaining Semantic Similarity Representation

- Instance Based Human Labelling (IHL)
 - Very expensive
 - Does not scale
 - Finest Granularity
- Pairwise Class-level Human Labelling (CHL)
 - Less expensive
 - Scales decently
 - Coarser Granularity
- Existing Knowledge for Labelling (EKL)
 - Not expensive
 - Scales easily
 - May not represent context-specific Explicability

Discouraging egregious mistakes

- Weight the loss values in accordance with the semantic similarity distance.
 - Explicable mistakes should not make the loss infinity.
 - Inexplicable or egregious mistakes should make the loss infinity.

\[W \mathcal{L}(y_i, p) = \mathcal{L}(W, p) \]

Table 1: ResNet-v2 on CIFAR-10.

<table>
<thead>
<tr>
<th>Model</th>
<th>Functionality</th>
<th>Explicability</th>
<th>Robustness</th>
<th>Cost Additional Human Labels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Top-1 Accuracy ↑</td>
<td>(L_{CHL}) ↓</td>
<td>(L_{EKL}) ↓</td>
<td>Gaussian Noise ↑</td>
</tr>
<tr>
<td>ResNet-v2 (W = I)</td>
<td>91.85%</td>
<td>14.761</td>
<td>5.044</td>
<td>16.047</td>
</tr>
<tr>
<td>ResNet-v2 (W = IHL)</td>
<td>83.61%</td>
<td>2.258</td>
<td>1.889</td>
<td>2.311</td>
</tr>
<tr>
<td>ResNet-v2 (W = CHL)</td>
<td>91.17%</td>
<td>3.054</td>
<td>1.305</td>
<td>3.274</td>
</tr>
<tr>
<td>ResNet-v2 (W = EKL)</td>
<td>86.03%</td>
<td>2.353</td>
<td>1.567</td>
<td>2.461</td>
</tr>
</tbody>
</table>

Figure 1: Different methods to learn explicability labels over class-level misclassifications.

Figure 2: Vanilla VGG vs VGG fine-tuned with EKL.