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Abstract
As increasingly complex AI systems are intro-
duced into our daily lives, it becomes important
for such systems to be capable of explaining the
rationale for their decisions and allowing users
to contest these decisions. A significant hurdle
to allowing for such explanatory dialogue could
be the vocabulary mismatch between the user and
the AI system. This paper introduces methods
for providing contrastive explanations in terms
of user-specified concepts for sequential decision-
making settings where the system’s model of the
task may be best represented as a blackbox sim-
ulator. We do this by building partial symbolic
models of the task that can be leveraged to an-
swer the user queries. We empirically test these
methods on a popular Atari game (Montezuma’s
Revenge) and modified versions of Sokoban (a
well known planning benchmark) and report the
results of user studies to evaluate whether people
find explanations generated in this form useful.

1. Introduction
Recent successes in AI have brought the field a lot of at-
tention, and there is a lot of excitement towards deploying
AI-based tools for solving various challenges faced in our
daily lives. For these systems to be truly effective in the real
world, they need to be capable of working with a lay end
user. This means not just inferring optimal decisions, but
also being able to allow users to raise explanatory queries
wherein they can contest the system’s decisions. An obsta-
cle to providing explanations to such questions is the fact
that the systems may not have a shared vocabulary with its
end users or have an explicit interpretable model of the task.
More often than not, the system may be reasoning about the
task in a high-dimensional space that is opaque to even the
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developers of the system, let alone a lay user.

While there is a growing consensus within the explainable
AI community that end-user explanations need to be framed
in terms of user understandable concepts, the focus generally
has been on introducing such methods for explaining one-
shot decisions such as in the case of classifiers (c.f. (Kim
et al., 2018; Ribeiro et al., 2016)). This is unfortunate as
explaining sequential decision-making problems present
challenges that are mostly absent from the one-shot decision-
making scenarios. In these problems, we not only have to
deal with possible interrelationship between the actions in
the sequence, but may also need to explain conditions for
the executability of actions and the cost of executing certain
action sequences. Effectively, this means that explaining a
plan or policy to a user would require the system to explain
the details of the domain (or at least the agent’s belief of it)
in terms they can understand.

Barring a few exceptions in summarizing policies like
(Hayes & Shah, 2017), most work in explaining sequential
decision-making problems have thus used a model specified
in a shared vocabulary as a starting point for explanation
(Chakraborti et al., 2020). Our work aims to correct this
by developing methods that are able to field some of the
most fundamental explanatory queries identified in the lit-
erature, namely contrastive queries, i.e., questions of the
form ‘why P (the decision proposed by the system) and
not Q (the alternative proposed by the user or the foil)?
(Miller, 2018), in user-understandable terms. Our methods
achieve this by building partial and abstract symbolic mod-
els (Section 2) expressed in terms of the user’s vocabulary
that approximate the task details relevant to the specific
query raised by the user. Specifically, we will focus on
deterministic tasks where the system has access to a task
simulator and we will identify (a) missing preconditions to
explain scenarios where the foil raised by the user results
in an execution failure of an action and (b) cost function
approximations to explain cases where the foil is executable
but suboptimal (Section 3). We learn such models by in-
teracting with the simulator (on randomly sampled states)
while using learned classifiers that detect the presence of
user-specified concepts in the simulator states. Figure 1
presents the overall flow of this process with illustrative
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Figure 1. The explanatory dialogue starts when the user presents
the system with a specific alternate plan (foil). Here we consider
two foils, one that is invalid and another that is costlier than the
plan. The system explains the invalid plan by pointing out an action
precondition that was not met in the plan, while it explains the foil
suboptimality by informing the user about cost function. Each of
these model information is expressed in terms of concepts specified
by the user which we operationalize by learning a classifier for
each concept.

explanations in the context of a slightly updated version of
Montezuma’s Revenge (Wikipedia contributors, 2019). Our
methods also allow for the calculation of confidence over
the explanations and explicitly take into account the fact
that learned classifiers for user-specified concepts may be
noisy. This ability to quantify its belief about the correctness
of explanation is an important capability for any post-hoc
explanation system that may influence the user’s decisions.
We evaluate the system on two popular sequential decision
making domains, Montezuma’s Revenge and a modified
version of Sokoban (Botea et al., 2002) (a game involving
players pushing boxes to specified targets). We present user
study results that show the effectiveness of explanations
studied in this paper (Section 5).

2. Background
In this work, we focus on cases where a human observer is
trying to make sense of plans proposed by an autonomous
system. When the plan differs from the users’ expecta-
tions, they try to make sense of this disparity by asking
why some alternate expected plan was not proposed. The
goal then becomes addressing such counterfactual queries
in terms of the dynamics of the domain in question, ex-
pressed using user-specified concepts. We assume that the
decision-making algorithm computes the optimal solution,
and thus our focus isn’t on how the algorithm came up
with the specific decisions, but only on why this action se-
quence was chosen instead of an alternative that the user
expected. We assume access to a deterministic simulator

of the formMsim = 〈S,A, T, C〉, where S represents the
set of possible world states, A the set of actions and T the
transition function that specifies the problem dynamics. The
transition function is defined as T : S × A → S ∪ {⊥},
where ⊥ corresponds to an invalid absorber-state gener-
ated by the execution of an infeasible action. Invalid state
could be used to capture failure states that could occur when
the agent violates hard constraints like safety constraints.
Finally, C : S × A → R captures the cost function of
executing an action at a particular state (with cost of an
infeasible action taken to be infinite). We will overload
the transition function T to also work on action sequence,
i.e., T (s, 〈a1, ..., ak〉) = T (...T (T (s, a1), a2), ..., ak). We
will look at goal-directed problems in the sense that the
decision-making system needs to come up with the plan,
i.e., a sequence of actions, π = 〈a1, .., ak〉, that will drive
the state of the world to a goal state. In general we will
use the tuple Πsim = 〈I,G,Msim〉 to represent the decision
making problem, where I is the initial state and G the set
of goal states. Moreover a plan is optimal if it achieves the
goal and there exists no cheaper plan that can achieve the
goal (where C(I, π) is the total cost of executing π).

We will use symbolic action models with preconditions
and cost functions (similar to STRIPS models (Geffner &
Bonet, 2013)) as a way to approximate the problem for ex-
planations. Such a model can be represented by the tuple
ΠS = 〈FS , AS , IS , GS , CS〉, where FS is a set of propo-
sitional fluents defining the state space, AS is the set of
actions, IS is the initial state, GS is the goal specification.
Each valid problem state in the problem is uniquely iden-
tified by the subset of fluents that are true in that state (so
for any state s, s ⊆ FS). We will use the notation SMS to
denote the space of all possible states for the modelMS .
Each action a ∈ AS is further described in terms of the
preconditions preca (specification of states in which a is
executable) and the effects of executing the action. We will
denote the state formed by executing action a in state s as
a(s). We will focus on models where the preconditions are
represented as a conjunction of state factors. If the action
is executed in a state with missing preconditions, then the
execution results in the invalid state (⊥). Unlike standard
STRIPS models, where the cost of executing action is inde-
pendent of states, we will be using a state dependent cost
function of the form CS : 2F ×AS → R to capture the cost
of valid action executions. Internally, such state models may
be represented using conditional cost models of the type
discussed in (Geißer et al., 2016). In this paper, we won’t
try to reconstruct the exact cost function but will rather try
to estimate an abstract version of the cost function.
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3. Contrastive Explanations
The specific explanatory setting, illustrated in Figure 1, that
we are interested in studying involves a decision-making
problem specified by the tuple Πsim = 〈I,G,Msim〉 for
which the system identifies a plan π. When presented with
the plan, the user of the system may either accept it or
responds by raising an alternative plan πf (the foil) that
they believe should be followed instead. Now the system
would need to provide an explanation as to why the plan π
may be preferred over the foil πf in question. The only two
possibilities here are that either the foil is inexecutable and
hence can not be followed or it is costlier than the plan in
question.1 More formally,

Definition 1 The plan π is said to be preferred over a foil
πf for a problem Πsim = 〈I,G,Msim〉, if either of the
following conditions are met, i.e.,

1. πf is inexecutable, which means, either (a) T (I, πf ) 6∈
G, i.e the action sequence doesn’t lead to a possible
goal state, or (b) the execution of the plan leads to an
invalid state, i.e., T (I, πf ) = ⊥.

2. Or πf is costlier than π, i.e., C(I, π) < C(I, πf )

To concretize this interaction, consider an instance from a
modified version of Montezuma’s revenge (Figure 1). Let’s
assume the agent starts from the highest platform, and the
goal is to get to the key. The specified plan π may require the
agent to make its way to the lowest level, jump over the skull,
and then go to the key with a total cost of 20. Let us consider
a case where the user raises two possible foils that are quite
similar to π, but, (a) in the first foil, instead of jumping the
agent just moves left (as in it tries to move through the skull)
and (b) in the second, instead of jumping over the skull, the
agent performs the attack action (not part of the original
game, but added here for illustrative purposes) and then
moves on to the key. Now using the simulator, the system
could tell that in the first case, moving left would lead to
an invalid state and in the second case, the foil is more
expensive. It may however struggle to explain to the user
what particular aspects of the state or state sequence lead to
the invalidity or suboptimality. Even efforts to localize parts
of its own internal state representation for possible reasons
by comparing the foil with similar states where actions are
executable or cheaper may be futile, as even what constitutes
similar states as per the simulator may be conceptually quite
confusing for the user. This scenario thus necessitates the
use of methods that are able to express possible explanations
in terms that the user may understand.

Representational Assumptions A quick note on some of

1If the foil is as good as the original plan, then the system could
switch to foil without loss of optimality.

the representational assumptions we are making. The cen-
tral one we are making is of course that it is possible to
approximate the applicability of actions and cost function
in terms of high-level concepts. Apart from the intuitive
appeal of such models (many of these models have their ori-
gin in models from folk psychology), these representation
schemes have been widely used to model real-world sequen-
tial decision-making problems from a variety of domains
and have a clear real-world utility (Benton et al., 2019).
We agree that there may be problems where it may not be
directly applicable, but we believe this is a sound initial
step and applicable to many domains where currently Rein-
forcement Learning (RL) based decision-making systems
are being successfully used, including robotics and games.

Apart from this basic assumption, we make one additional
representational assumption, namely, that the precondition
can be expressed as a conjunction of positive concepts. Note
that the assumption doesn’t restricts the applicability of the
methods discussed here. Our framework can still cover cases
where the action may require non-conjunctive preconditions.
To see why, consider a case where the precondition of action
a is expressed as an arbitrary propositional formula, φ(C).
In this case, we can express it in its conjunctive normal
form φ′(C). Now each clause in φ′(C) can be treated as a
new compound positive concept. Thus we can cover such
arbitrary propositional formulas by expanding our concept
list with compound concepts (including negations and dis-
juncts) whose value is determined from the classifiers for
the corresponding atomic concepts.

Concept maps: To describe explanations in this setting, the
system needs to have access to a mapping from it’s inter-
nal state representation to a set of high-level concepts that
are known to the user (for Montezuma this could involve
concepts like agent being on ladder, holding onto key, being
next to a skull etc.). We will assume each concept corre-
sponds to a propositional fact that the user associates with
the task’s states and believes that the dynamics of the task
are determined by these concepts. This means that as per
the user, for each given state, a subset of these concepts may
be either present or absent. Our method assumes that we
have access to binary classifiers for each concept that may
be of interest to the user. The classifiers provide us with a
way to convert simulator states to a factored representation.
Such techniques have not only been used in explanation
(c.f. (Kim et al., 2018; Hayes & Shah, 2017)) but also in
works that have looked at learning high-level representa-
tions for continuous state-space problems (c.f. (Konidaris
et al., 2018)). Let C be the set of classifiers corresponding
to the high-level concepts. For state s ∈ S, we will over-
load the notation C and specify the concepts that are true
as C(s), i.e., C(s) = {ci|ci ∈ C ∧ ci(s) = 1} (where ci
is the classifier corresponding to the ith concept, we will
overload this notation and also use it to stand for the label of
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the ith concept). The user could specify the set of concepts
by identifying positive and negative example states for each
concept. These examples could then be used to learn the
required classifiers by using algorithms best suited for the
internal simulator state representation. This means that the
explanatory system should have some method of exposing
simulator states to the user. A common way to satisfy this
requirement would be by having access to visual representa-
tions for the states. The simulator state itself doesn’t need
to be an image as long as we have a way to visualize it (for
example in Atari games where the states can be represented
by the RAM state of the game controller but we can still
visualize it). The concept list can also be mined from quali-
tative descriptions of the domain and we can crowd source
the collection of example states for each concept.

Explanation using concepts: To explain why a given foil
is not preferred over the specified plan, we will present infor-
mation about the symbolic model expressed in user’s vocab-
ulary, MC

S = 〈C, AC
S ,C(I),C(G), CCS 〉. Where C(G) =⋂

sg∈G C(sg) and AC
S contains a definition for each action

a ∈ A. The model is a sound abstraction of the simulator
Msim = 〈S, T,A, C〉 for regions of interest Ŝ ⊆ S , in so
far as, ∀s ∈ Ŝ and ∀a ∈ A, we have an equivalent action
aC ∈ AC

S , such that aC(C(s)) = C(T (s, a)) (assuming
C(⊥) = ⊥) and CCS (C(s), a) = C(s, a). Note that estab-
lishing the preference of plan does not require informing
the users about the entire model, but rather only the relevant
parts. For conciseness, we will use ai for both the simulator
action and the corresponding abstract action in the symbolic
model as long as the context allows it to be distinguished.

For establishing the invalidity of πf , we just need to focus
on explaining the failure of the first failing action ai, i.e.,
the last action in the shortest prefix that would lead to an
invalid state (which in our running example is the move-left
action in the state presented in Figure 1 for the first foil).
We can do so by informing the user that the failing action
has an unmet precondition, as per the symbolic model, in
the state it was executed in. Formally

Definition 2 For a failing action ai for the foil πf =
〈a1, .., ai, .., an〉, ci ∈ C is considered an explanation for
failure if ci ∈ precai \C(si), where si is the state where ai
is meant to be executed (i.e si = T (I, 〈a1, .., ai−1〉)).

In our example for the invalid foil, a possible explanation
would be to inform the user that move-left can only be
executed in states for which the concept skull-not-on-left
is true; and the concept is false in the given state. This
formulation is enough to capture both conditions for foil
inexecutability by appending an additional goal action at
the end of each sequence. The goal action causes the state
to transition to an end state and it fails for all states except
the ones in G. Our approach to identifying the minimal
information needed to explain specific query follows from

studies in social sciences that have shown that selectivity or
minimality is an essential property of effective explanations
(Miller, 2018).

For explaining the suboptimality of the foil, we have to
inform the user about CCS . To ensure minimality of explana-
tions, rather than generating the entire cost function or even
trying to figure out individual conditional components of
the function, we will instead try to learn an abstraction of
the cost function Cabss , defined as follows

Definition 3 For the symbolic model MC
S =

〈C, AC
S ,C(I),C(G), CCS 〉, an abstract cost func-

tion CabsS : 2C × AC
S → R is specified as follows

CabsS ({c1, .., ck}, a) = min{CCS(s, a)|s ∈ SMC
S
∧ {c1, .., ck} ⊆

s}].

Intuitively, CabsS ({c1, .., ck}, a) = k can be understood as
stating that executing the action a, in the presence of con-
cepts {c1, .., ck} costs at least k. We can use CabsS in an
explanation of the form

Definition 4 For a valid foil πf = 〈a1, .., ak〉, a plan π and
a problem Πsim = 〈I,G,Msim〉, the sequence of concept
sets of the form Cπf

= 〈Ĉ1, ..., Ĉk〉 along with Cabss is con-
sidered a valid explanation for relative suboptimality of the
foil (denoted as CabsS (Cπf

, πf ) > C(I, π)), if ∀Ĉi ∈ Cπf
,

Ĉi is a subset of concepts presents in the corresponding
state (where state is I for i = 1 and T (I, 〈a1, ..., ai−1〉) for
i > 1) and Σi={1..k}CabsS (Ĉi, ai) > C(I, π)

In the earlier example, the explanation would include the
fact that executing the action attack in the presence of the
concept skull-on-left, will cost at least 500 (as opposed to
original plan cost of 20).

4. Identifying Explanations through
Sample-Based Trials

For identifying the model parts for explanatory query, we
will rely on the agent’s ability to interact with the simulator
to build estimates. Given the fact that we can separate the
two cases at the simulator level, we will keep the discussion
of identifying each explanation type separate and only focus
on identifying the model parts once we know the failure
type.

Identifying failing precondition: To identify the missing
preconditions, we will rely on the simple intuition that
while successful execution of an action a in the state sj
with a concept Ci doesn’t necessarily establish that Ci is
a precondition, we can guarantee that any concept false in
that state can not be a precondition of that action. This
is a common line of reasoning exploited by many of the
model learning methods (c.f (Carbonell & Gil, 1990; Stern
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& Juba, 2017)). So we start with the set of concepts that
are absent in the the state (sfail) where the failing action
(afail) was executed, i.e., poss prec set = C \ C(sfail). We
then randomly sample for states where afail is executable.
Each new sampled state si where the action is executable
can then be used to update the possible precondition set as
poss prec set = poss prec set ∩ C(si). That is, if a state
is identified where the action is executable but a concept
is absent then it can’t be part of the precondition. We will
keep repeating this sampling step until the sampling budget
is exhausted or if one of the following exit conditions is
met. (a) In cases where we are guaranteed that the con-
cept list is exhaustive, we can quit as soon as the set of
possibilities reduce to one (since there has to be a missing
precondition at the failure state). (b) The search results in an
empty list. The list of concepts left at the end of exhausting
the sampling budget represents the most likely candidates
for preconditions. An empty list here signifies the fact that
whatever concept is required to differentiate the failure state
from the executable one is not present in the initial con-
cept list (C). This can be taken as evidence to query the
user for more task-related concepts. Any locality considera-
tions for sampled states, like focusing on states close to the
plan/foil, can be baked into the sampler. The full specifica-
tion of the algorithm is provided in the supplementary file
(https://bit.ly/38TmDPA).

Identifying cost function: Now we will employ a similar
sampling based method to identify the right cost function
abstraction. Unlike the precondition failure case, there is no
single action we can choose but rather we need to choose a
level of abstraction for each action in the foil (though it may
be possible in many cases to explain the suboptimality of
foil by only referrring to a subset of actions in the foil). Our
approach here would be to find the most abstract representa-
tion of the cost function at each step such that of the total
cost of the foil becomes greater than that of the specified
plan. Thus for a foil πf = 〈a1, ..., ak〉 our objective become

minĈ1,...,Ĉk
Σi=1..k‖Ĉi‖ subject to Cabss (Cπf , πf ) > C(I, π)

For any given Ĉi, Cabss (Ĉi, ai) can be approximated by
sampling states randomly and finding the minimum cost
of executing the action ai in states containing the concepts
Ĉi. We can again rely on a sampling budget to decide how
many samples to check and enforce required locality within
sampler. Similar to the previous case, we can identify the
insufficiency of the concept set by the fact that we aren’t
be able to identify a valid explanation. The algorithm can
be found in the supplementary file (https://bit.ly/
38TmDPA).

Confidence over explanations: Though both the methods
discussed above are guaranteed to identify the exact model
in the limit, the accuracy of the methods is still limited by
practical sampling budgets we can employ. So this means
it is important that we are able to establish some level of
confidence in the solutions identified. To assess confidence,

Figure 2. A simplified probabilistic graphical models for explana-
tion inference, Subfigure (A) and (B) assumes classifiers to be
completely correct, while (C) and (D) presents cases with noisy
classifier.

we will follow the probabilistic relationship between the
random variables as captured by Figure 2 (A) for precon-
dition identification and Figure 2 (B) for cost calculation.
Where the various random variables captures the following
facts: Osa - indicates that action a can be executed in state
s, ci ∈ pa - concept ci is a precondition of a, Osci - the con-
cept ci is present in state s, Cabss ({ci}, a) ≥ k - the abstract
cost function is guaranteed to be higher than or equal to k
and finally OC(s,a)≥k - stands for the fact that the action
execution in the state resulted in cost higher than or equal
to k. We will allow for inference over these models, by
relying on the following simplifying assumptions - (1) the
distribution of concepts over the state space is independent
of each other, (2) the distribution of all non-precondition
concepts in states where the action is executable is the same
as their overall distribution across the problem states (which
can be empirically estimated), (3) cost distribution of an
action over states corresponding to a concept that does not
affect the cost function is identical to the overall distribu-
tion of cost for the action (which can again be empirically
estimated). The second assumption implies that you are as
likely to see a non-precondition concept in a sampled state
where the action is executable as the concept was likely to
appear at any sampled state (this distribution is denoted as
pci ). While the third one implies that for a concept that has
no bearing on the cost function for an action, the likelihood
that executing the action in a state where the concept is
present will result in a cost greater than k will be the same
as that of the action execution resulting in cost greater than
k for a randomly sampled state (pC(.,a)≥k).

For a single sample, the posterior probability of ex-
planations for each case can be expressed as follows:
For precondition estimation, updated posterior proba-
bility for a positive observation can be computed as
P (ci ∈ pa|Osci ∧O

s
a) = (1− P (ci 6∈ pa|Osci ∧O

s
a)), where

P (ci 6∈ pa|Osci ∧O
s
a) =

pci ∗ P (ci 6∈ pa)

P (Osci |Osa)

https://bit.ly/38TmDPA
https://bit.ly/38TmDPA
https://bit.ly/38TmDPA
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and for the case of cost function approximation

P (Cabss ({ci}, a) ≥ k|Osci ∧OC(s,a)≥k) =

P (Cabss ({ci}, a) ≥ k)

P (Cabss ({ci}, a) ≥ k)) + pC(.,a)≥k ∗ P (¬Cabss ({ci}, a) ≥ k))

Full derivation of above formulas can be found in the sup-
plementary file (https://bit.ly/38TmDPA). The dis-
tribution used in the cost explanation, can either be limited
to distribution over states where action ai is executable or
allow for the cost of executing an action in a state where it
is not executable to be infinite.

Using noisy concept classifiers: Given how unlikely it is
to have access to a perfect classifier for any concept, a more
practical assumption to adopt could be that we have access
to a noisy classifier. However, we assume that we also have
access to a probabilistic model for its prediction. That is, we
have access to a function PC : C→ [0, 1] that gives the prob-
ability that the concept predicted by the classifier is actually
associated with the state. Such probability functions could
be learned from the test set used for learning the classifier.
Allowing for the possibility of noisy observation generally
has a more significant impact on the precondition calcula-
tion than the cost function approximation. Since we are
relying on just generating a lower bound for the cost func-
tion, we can be on the safer side by under-approximating the
cost observations received (though this could lead to larger
than required explanation). In the case of precondition esti-
mation, we can no longer use a single failure (execution of
an action in a state where the concept is absent) as evidence
for discarding the concept. Though we can still use it as
an evidence to update the probability of the given concept
being a precondition. We can remove a particular possible
precondition from consideration once the probability of it
not being a precondition crosses a specified threshold.

To see how we can incorporate these probabilistic observa-
tions into our confidence calculation, consider the updated
relationships presented in Figure 2 (C) and (D) for precondi-
tion and cost function approximation. Note that in previous
sections, we made no distinction between the concept being
part of the state and actually observing the concept. Now we
will differentiate between the classifier saying that a concept
is present (Osci) from the fact that the concept is part of the
state (ci ∈ C(S)). Now we can use this updated model
for calculating the confidence. We can update the poste-
rior of a concept not being a precondition given a negative
observation (Os¬ci ) using the formula

P (ci 6∈ pa|Os¬ci ∧O
s
a) =

P (Os¬ci |ci 6∈ pa ∧O
s
a) ∗ P (ci 6∈ pa|Osa)

P (O¬ci |Osa)

Similarly we can modify the update for a positive obser-
vation to include the observation model and also do the
same for the cost explanation. For calculation of cost con-
fidence, we will now need to calculate P (OC(s,a)≥k|ci 6∈
C(s), Cabss ({ci}, a) ≥ k). This can either be empirically cal-
culated from samples with true label or we can assume that

Figure 3. Montezuma Foils: Left Image shows foils for screen 1,
(A) Move right instead of Jump Right (B) Go left over the edge
instead of using ladder (C) Go left instead of jumping over the
skull. Right Image shows foil for screen 4, (D) Move Down instead
of waiting.

Figure 4. Sokoban Foils: Left Image shows foils for Sokoban-
switch, note that the green cell will turn pink once the agent passes
it. Right Image shows foil for screen Sokoban-cell.

this value is going to be approximately equal to the overall
distribution of the cost for the action.

The derivations for all of the above expressions and formulas
for the other cases can be found in the supplementary file.

5. Evaluation
For validating the soundness of the methods discussed be-
fore, we tested the approach on the open-AI gym’s determin-
istic implementation of Montezuma’s Revenge (Brockman
et al., 2016) for precondition identification and two modified
versions of the gym implementation of Sokoban (Schrader,
2018) for cost based foil evaluation. The first version of
Sokoban included a switch the player could turn on to re-
duce the cost of pushing the box (we will refer to this version
as Sokoban-switch) and the second version (Sokoban-cells)
included particular cells from which it is costlier to push
the box. We used RAM-based state representation for Mon-
tezuma and images of game state for the Sokoban variations.
To add richer preconditions to the settings, we added a wrap-
per over the original simulators for all the games to render

https://bit.ly/38TmDPA
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any action that fails to change the current agent state as an
action failure. For Montezuma, we selected four invalid
foils for the game, three from screen 1 and one from screen
4 and for Sokoban, we selected one valid but suboptimal foil
for each variation. The specifics of the games, foils, plans
and state representation are provided in the supplementary
file (https://bit.ly/38TmDPA). The plan and foils
used can be found in Figure 3 (for Montezuma) and Figure
4 (for Sokoban variants).

Concept learning: For Montezuma, we specified ten con-
cepts for each screen and for the Sokoban variations we
used a survey to collect the set of concepts. The survey
allowed participants to interact with the game through a
web interface, and at the end, they were asked to specify
game concepts that they thought were relevant for particular
actions. For Sokoban-switch, we collected data from six par-
ticipants and received 25 unique concepts and for Sokoban-
cell we collected data from seven participants and received
38 unique concepts. In both domains, we wrote scripts to
identify positive and negative examples for each concept
from randomly sampled states of the game. For Sokoban
variants, we rejected any concept that resulted in less than
ten samples after 1000 episodes of sampling and conse-
quently we focused on just 20 concepts for Sokoban-switch
and 32 concepts for Sokoban-cell respectively. We used
AdaBoost Classifier (Freund et al., 1999) on Montezuma,
and Convolutional Neural Networks (CNNs) for Sokoban
variants. The CNN architecture involved four convolutional
layers followed by three fully connected layers that gave a
binary classification output. Montezuma classifiers had an
average accuracy of 99.72%, while that for Sokoban-switch
was 99.46% and for Sokoban-cell was 99.34%.

Explanation identification: As mentioned previously,
we ran the search for identifying preconditions for Mon-
tezuma’s foils and cost function identification on Sokoban.
From the collected list of concepts, we doubled the final con-
cept list used by including negations of each concept. So for
Montezuma we used 20 concepts per screen, and 40 and 64
concepts were used for Sokoban-switch and Sokoban-cell.
The probabilistic models for each classifier were calculated
from the corresponding test sets. For precondition identifica-
tion, the search was run with a sampling budget of 500 and
a cutoff probability of 0.01 for each concept. The search
was able to identify the expected explanation for each foil
and had a mean confidence of 0.5044 for foils in screen 1
and a confidence value of 0.8604 for the foil in screen 4.
The ones in screen 1 had lower probabilities since they were
based on more common concepts and thus their presence
in the executable states was not a strong evidence for them
being a precondition. For cost function identification, the
search was run with a sampling budget of 750 and all the
calculations, including both computing the concept distri-
bution and updating the probability of explanation, were

limited to states where the action was executable. Again the
search was able to find the expected explanation. We had an
average confidence of 0.9996 for the Sokoban-switch and
0.998 for the Sokoban-cell.

User study: With the basic explanation generation method
in place, we were interested in evaluating if users would find
such an explanation helpful. Specifically, the hypothesis we
tested were

Hypothesis 1: Missing precondition information is a useful
explanation for action failures.

Hypothesis 2: Abstract cost functions are a useful explana-
tion for foil suboptimality.

To evaluate this, we performed a user study with all the
foils used along with the generated explanation and a sim-
ple baseline explanation. For precondition case (H1), the
baseline involved pointing out just the failing action and the
state it was executed. For the cost case (H2), it involved
pointing out the exact cost of executing each action in the
foil. The users were asked to choose the one they believed
was more useful (the choice ordering was randomized to en-
sure the results were counterbalanced) and were also asked
to report on a Likert scale the completeness of the chosen
explanation. For each foil, we took the explanation gener-
ated by the search and converted it into text by hand. The
subjects were also given the option to provide suggestions
on what they think would help improve the completeness
of the explanation in a free text field. For H1, we collected
20 replies in total (five per foil) and 19 out of the 20 partici-
pants selected precondition based explanation as the choice.
On the question of whether the explanation was complete,
we had an average score of 3.35 out of 5 on the Likert scale
(1 being not at all complete and 5 being complete). For
H2, we again collected 20 replies in total (ten per foil) and
found 14 out of 20 participants selected the concept-based
explanation over the simple one. The concept explanations
had on average a completeness score of 3.36 out of 5. The
results seems to suggest that in both case people did prefer
the concept-based explanation over the simple alternative.
The completeness results suggest that people may like, at
least in some cases, to receive more information about the
model.

6. Related Work
There is an increasing number of works investigating the
use of high-level concepts to provide meaningful post-hoc
explanations to the end-users. The representative works
in this direction include TCAV (Kim et al., 2018) and its
various offshoots like (Luss et al., 2019) that have focused
on one-shot decisions. Authors of (Hayes & Shah, 2017)
have looked at the use of high-level concepts for policy sum-
maries. They use logical formulas to concisely characterize

https://bit.ly/38TmDPA
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various policy choices, including states where a specific ac-
tion may be selected (or not). Unlike our work, they are not
trying to answer why the policy ends up choosing a specific
action (or not). (Waa et al., 2018) looks at addressing sub-
optimality of foils while supporting interpretable features,
but it requires the domain developer to specifically encode
positive and negative outcomes to each action. Another
related work is the approach studied in (Madumal et al.,
2020). Here, they are also trying to characterize dynamics
in terms of high-level concepts. Though in their example,
they assume that the full structural relationship between
the various variables is provided upfront. The explanations
discussed in this paper can also be seen as a special case of
Model Reconciliation explanation (c.f (Chakraborti et al.,
2017)), where the human model is considered to be empty
and our use of abstractions is also connected to the HELM
explanatory framework introduced in (Sreedharan et al.,
2018). Usefulness of preconditions as explanation has also
been considered in other explanatory works like (Winikoff,
2017; Broekens et al., 2010). Our effort to associate ac-
tion cost to concepts could also be contrasted to efforts in
(Juozapaitis et al., 2019) and (Anderson et al., 2019) which
explain in terms of interpretable reward components. Un-
fortunately, their method relies on having reward function
being represented using interpretable components.

7. Conclusion
We view the approaches introduced in the paper as the first
step towards designing more general symbolic explanatory
methods for sequential decision-making problems that op-
erate on inscrutable representations. The current methods
facilitate generation of explanations in user-specified terms
for sequential decisions by allowing users to query the sys-
tem about alternative plans. We implemented these method
in multiple domains and evaluated the effectiveness of the
explanation using user studies. While contrastive explana-
tions are answers to questions of the form “Why P and not
Q?”, we have mostly focused on refuting the foil (the “not
Q?” part). This is because, in the presence of a simulator, it
is easier to show why the plan is valid by simulating the plan
and presenting the state trace. We can further augment such
traces with the various concepts that are valid at each step
of the trace. Also, note that the methods discussed in this
paper can still be used if the user’s questions are specified in
term of temporal abstraction over the agent’s action space.
As long as the system can simulate the foils raised by the
user, we can keep the rest of the methods discussed in the
paper the same. In future, we would like to investigate more
complex tasks, such as those with stochastic dynamics or
partial observability. Also, we could look at extending the
methods to support partial foils (where the user only speci-
fies some part of the plan) and develop methods that allow
for efficient acquisitions of new concepts from the user.

As mentioned, the readers can find the supplementary file
containing the algorithm pseudocodes, derivation of all the
formulas (along with formulas for noisy classifier cases) and
additional experiment details at the link https://bit.
ly/38TmDPA.
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