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Abstract

There is a growing interest within the AI research community in developing

autonomous systems capable of explaining their behavior to users. However, the

problem of computing explanations for users of different levels of expertise has

received little research attention. We propose an approach for addressing this

problem by representing the user’s understanding of the task as an abstraction of

the domain model that the planner uses. We present algorithms for generating

minimal explanations in cases where this abstract human model is not known.

We reduce the problem of generating an explanation to a search over the space

of abstract models and show that while the complete problem is NP-hard, a

greedy algorithm can provide good approximations of the optimal solution. We

empirically show that our approach can efficiently compute explanations for a

variety of problems and also perform user studies to test the utility of state

abstractions in explanations.

Keywords: Explanations for Plans, Abstractions, Contrastive Explanations

1. Introduction1

AI systems have the potential to transform society by assisting humans in2

diverse situations ranging from extraplanetary exploration to assisted living. In3

order to achieve this potential, however, humans working with such systems4

need to be able to understand them just as they would understand human team5

members. This presents a number of challenges because most humans do not6
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understand AI algorithms and their behavior at the same intuitive level that7

they understand other humans. Handling and possibly overcoming such knowl-8

edge asymmetry requires us to develop and deploy AI systems that are capable9

of providing cogent explanations for their actions/decisions to end users. A sig-10

nificant challenge for any such system would be the fact that more often than11

not, the AI system may be modeling and reasoning about the task with much12

greater fidelity than the user is aware of (or capable of reasoning with). While13

there have been a number of recent works on the problem of explaining plans14

and actions chosen by agents (readers can refer to the survey [1] for previous15

works in this direction), they have generally assumed that the user understands16

the task at the same level of abstraction as the agent in question.17

In this paper, we propose a new approach to this problem where the agent18

explains its ongoing or planned behavior in a way that is both tailored to the19

user’s background and is designed to reduce cognitive burden on the user’s end.20

This is done by modeling a user’s expertise, or the level of detail at which a21

user understands the task using abstracted models. We can estimate this level22

based on questions that the user asks and provide explanations that are close23

to this estimated level of expertise.24

We consider explanations in the framework of counterfactual reasoning,25

where a user who is confused by the agent’s activity (or proposed activity)26

presents alternative behavior that they would have expected the agent to exe-27

cute. This aligns with the widely held belief that humans expect explanations28

to be contrastive [2]. In keeping with the terminology used in social sciences29

literature, we will denote the set of alternative behaviors as foils to the proposed30

robot behavior.31

For instance, consider a mission-control operator who needs to manage an32

autonomous robot on Mars in the midst of a sandstorm that could present33

valuable data for analysis. If the robot proposes to go back to the base before34

going to a vantage point for observing the storm, the operator would naturally be35

perplexed, and may be motivated to ask the rover why it didn’t go directly to the36

vantage point. While answering the operator’s queries it is important that the37
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explanation being given is tailored to meet the user’s background knowledge.38

Here an explanation that informs the operator of some specific mission goals39

that warranted this unintuitive plan, for example “I am required to drop the40

collected samples in the base before going to the vantage point”, may be preferred41

over a detailed explanation involving the specifics of the battery model or the42

rover motors (for example “Motors of model #2310 needs to be recalibrated after43

every 20 miles and I need to go to base to recaliberate”). As far as the rover44

is concerned, both of these explanations are equally valid reasons to choose the45

circuitous route, but a mission control operator may find the former easier to46

understand while an engineer may better appreciate the latter. This level of user47

specificity requires methods that estimate possible models that can capture the48

user’s level of understanding of the task. As mentioned, we will make use of49

the questions (i.e the foils) raised by the user for the specific task at hand (and50

potentially even the history of previous interactions) to build such estimates.51

Accurate estimate of the user’s expertise not only lets us control the level of52

detail in explanation but also allows us to provide the most concise explanation53

(by avoiding unnecessary details) and thereby reduce the cognitive burden of54

the user.55

In this paper we present the Hierarchical Expertise-Level Modeling56

or the HELM approach for facilitating such context and user-specific explana-57

tions. We assume that the user’s understanding of the task is an abstraction58

of the model used by the robot; which captures both the limited information59

and computational capabilities of the user. HELM generates appropriate ex-60

planations by searching through a model lattice of possible abstractions of the61

agent’s model. The model lattice provides a concise way for the system designer62

to encode their prior knowledge about potential users. Each model within this63

lattice represents a different level of understanding of the task, with the high-64

est fidelity representation (corresponding to the most detailed understanding of65

the domain used by the robot) forming the base of the lattice and the model66

representing the most naive understanding of the task (for example one held by67

a lay person) forming the highest nodes. Since the user’s level of expertise is68
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unknown to the agent, it has to estimate the human model before searching for69

an explanation.70

We focus on contrastive explanations, where an explanation that is an answer71

to a question of the form “Why P and not Q?”, in our case, P and Q are stand-72

ins for the current robot plan and the foil respectively. Most existing works in73

explanation for plans have focused on answering the first part “Why P?” (for74

example works like [3, 4] have looked at identifying causal explanations for each75

action), so the majority of this work will focus on finding a concise explanation76

for the latter part of the full question. Specifically, our explanations will consist77

of model information that may be absent in the user’s abstract model and78

possible proofs for foil failure. Thus, in addition to helping convince the user79

of the incorrectness of the foils in question, the explanations should also shift80

the user’s model to a more accurate model in the lattice. This approach could81

be understood as a variant of the model refinement methods discussed in the82

counter-example guided model checking (CEGAR) literature [5]. Our methods83

extend these principles to settings with uncertainty regarding the current level84

of abstraction of the model (a non-issue in the model-checking settings where85

CEGAR methods are typically used).86

This paper generalizes and extends our recent work [6] with extended theo-87

retical and empirical results and exposition. In addition to clarifying the con-88

cepts our contributions include89

• We consider the use of non-standard lattices as a way to allow designers90

to incorporate more information about the user’s model in to the expla-91

nation generation process and discuss potential computational tradeoff92

introduced by the use of such lattice types over the ones considered in the93

rest of the paper.94

• We investigate the use of such methods for domains that contain state de-95

pendent costs (hence affected by the abstraction) and discuss the potential96

explanatory dialogue that could occur in such settings.97

• We also show how our method could be used in cases where the user98
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Figure 1: An illustration of the hierarchical explanation process. The human observer

who views the task at a higher level of abstraction expects the rover to execute a

different plan from the one chosen by the rover. The rover presents the human with

an explanation it believes will help resolve the foils in the human’s updated model.

model may not just be abstract but the user may also hold erroneous99

beliefs about the task.100

• We perform a user study to verify the utility of abstraction in generating101

explanation that are easier for users to work with.102

The rest of this paper is structured as follows. Section 2 a brief overview103

of the background and in Section 3 we present our formal framework. Section104

4 covers different approaches for generating explanations and sections 4.1, 4.2105

and 4.3 extend these methods to more general settings. Section 5 presents106

evaluations of the method. In sections 6 and 7, we will discuss the related work107

and possible future directions.108

2. Background109

In this work, we focus on abstractions that form models by projecting out110

state fluents. While the presentation in the following sections is equally valid111

for both predicate and propositional abstractions, we will focus on propositional112
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abstractions to keep our formulation clear and concise and later discuss potential113

changes required to meet the requirements of predicate abstractions. We will114

look at planning models of the form M = 〈P, S,A, I,G〉 where P gives the set115

of state fluents, S the set of possible states, A the set of actions, I the initial116

state and G the goal. Each state s ∈ S is uniquely represented by the set of117

propositions that are true in that state, i.e, s ⊆ P .118

Each action a ∈ A is associated with a set of positive preconditions prec+
a119

(specified as a conjunction of propositions) and negative preconditions prec−a120

that need to hold for the effects (ea) of that action to be applied to a particular121

state. Each effect set ea can be further separated into a set of add effects e+
a122

and a set of delete effects e−a . The result of executing an action a on a state s123

in this setting is defined as a(s) = (s ∪ e+
a ) \ e−a , if prec−a ⊆ s ∧ prec−a ∩ s = ∅.124

A plan π is defined as a sequence of actions (〈a1, .., an〉, n being the size of the125

plan), and a plan is said to solve M (i.e, π(I) |=M G) if π(I) ⊇ G.126

Automated planning has a long tradition of employing abstraction both for127

plan generation (cf. [7]) and for generating heuristics (cf. [8, 9]) and a number128

of different abstraction schemes have been proposed in these works. In fact,129

state abstractions as presented in this work have been widely used in pattern130

databases and are referred to as projections in that literature (cf. [10, 11]).131

Following works like [8, 12], we will also use the concept of a transition sys-132

tem induced by the planning model to define state abstractions. Intuitively, a133

transition system constitutes a graph where the nodes represent possible states,134

and the edges capture the transitions between the states that are valid in the135

corresponding planning model.136

Formally a transition system T corresponding to a model M can be repre-137

sented by a tuple of the form T = 〈S,L, T, so, Sg〉, where S is the set of possible138

states in M, L is the set of transition labels (corresponding to the action that139

induce that transition), T is the set of possible labeled transitions, s0 is the140

initial state and Sg is the set of states that satisfies the goal specified by M.141

We will refer to T to be the safe transition system induced by a model M, if142

and only if, for any labeled transition 〈s, a, s′〉 ∈ T , we have prec+
a ⊆ s and143
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prec−a ∩ s = ∅. Through most of this work we will focus our attention on cases144

where the semantics of the planning task is defined in terms of safe transition145

systems.146

Definition 1. A propositional abstraction function fΛ for a set of propositions147

Λ and state space S, defines a surjective mapping of the form fΛ : S → X,148

where X is a projection of S, such that for every state s ∈ S, there exists a149

state fΛ(s) ∈ X where fΛ(s) = s \ Λ.150

Definition 2. For a planning model M = 〈P, S,A, I,G〉 with a corresponding151

transition system T , a model M′ = 〈P ′, S′, A′, I ′, G′〉 with a transition system152

T ′ is considered an abstraction of MMM for a set of propositions Λ, if for every153

transition s1
a−→ s2 in T corresponding to an action a, there exists an equiv-154

alent transition fΛ(s1)
a′−→ fΛ(s2) in T ′, where a′ is part of the new action set A′.155

156

We will slightly abuse notation and extend the abstraction functions to mod-157

els and actions, i.e in the above case, we will have M′ ∈ fΛ(M) (where fΛ(M)158

is the set of all models that satisfy the above definition for the set of fluents Λ)159

and similarly we will have a′ ∈ fΛ(a). As per Definition 2, the abstract model160

is complete in the sense that all plans that were valid in the original model will161

have an equivalent plan in this new model. We will use the operator @ to cap-162

ture the fact that the model M′ is an abstraction of M, i.e if M @M′ then163

there exist a set of propositions Λ such that M′ ∈ fΛ(M).164

2.1. Designing Complete Abstractions165

While there exists a number of works that have looked at the problem of166

designing abstractions (cf. [13, 7, 12]), unfortunately many of these works have167

considered directly updating transition system or using specialized or more ex-168

pressive problem formulation to capture abstract models. Thankfully, the fact169

that we are interested in complete abstractions (as opposed to sound abstrac-170

tions) means we can employ simpler model transformation schemes to generate171
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abstract models. In particular, we will consider transformations that simply172

drops the set of literals to be abstracted from all the action definitions, i.e,173

Theorem 1. For a given modelM = 〈P, S,A, I,G〉 and a set of propositions Λ,174

a model M′ = 〈P ′, S′, A′, I ′, G′〉 is a complete abstraction under safe execution175

semantics for Λ, if P ′ = P − Λ, S′ = [S]fΛ , I ′ = fΛ(I), G′ = G \ Λ and for176

every a ∈ A (where a = 〈prec+
a , prec−a , eff+

a , eff−a 〉) there exists a′ ∈ A′, such that177

a′ = 〈prec+
a \ Λ, prec−a \ Λ, eff+

a \ Λ, eff−a \ Λ〉.178

Proof Sketch. To see why the new model would be an complete abstraction,179

consider a transition 〈s, a, s′〉 induced by M. Now as per the definitions of180

safe transition systems, we know that s ⊆ prec+
a and s ∩ prec−a = ∅ and s′ =181

s \ eff−a ∪ eff+
a . Its easy to see that given this setting, (s \ Λ) ⊆ (prec+

a \ Λ) and182

(s \ Λ) ∩ (prec−a \ Λ) = ∅, which means there must be an action a′ ∈ A′ that is183

executable in fΛ(s). Similarly we can show the result of executing a′ must be184

fΛ(s), this shows that M′ is a complete abstraction of M as every transition185

induced by it is present in the transition system induced by M′.186

An important point to note here is that this transformation scheme generates187

a unique abstract model for each model and proposition set, and we will denote188

this unique model as fΛ(M). For the rest of the paper, we will mainly focus on189

this method to induce the abstractions, but general framework of explanation190

generation discussed in this paper can be adapted to other methods of generating191

abstract models. In cases, where we prove specific results or present optimization192

that rely on this abstraction procedure we will denote the abstraction function193

by f safe
Λ to differentiate it from other methods. With the definition of abstraction194

and related notations in place, we will look at our explanatory setting and a195

way to capture the space of possible user models that would allow for efficient196

estimation of unknown user model given user queries. While the above operation197

is defined for propositional fluents, we can perform similar operations on the198

lifted domain, where projecting out a predicate would correspond to projecting199

out a set of propositional fluents from the grounded domain.200
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3. Hierarchical Expertise-Level Modeling201

As mentioned earlier, we are investigating explanatory settings where the202

user’s understanding of the task can be represented as an abstraction of the203

robot’s model. While the exact level of abstraction may be unknown, given204

a set of candidate state fluents that may be missing from the human model,205

we can capture the potential models and their relationship through a model206

lattice207

Definition 3. For a model M#, the model lattice LLL is a tuple of the form208

L = 〈M,E,P, `〉, where M is the set of lattice nodes such that M# ∈ M and209

∀ M′ ∈ M,M# v M′, E is the lattice edges, P is the superset of propositions210

considered for abstraction within this lattice and ` is a function mapping edges211

to labels. Additionally, for each edge ei = (Mi,Mj) there exists a proposition212

p ∈ P such that fp(Mi) =Mj and `(Mi,Mj) = p.213

Thus each edge in this lattice corresponds to an abstraction formed by pro-214

jecting out a single proposition (represented by the label of the edge). We can215

also define a concretization function γp that retrieves the model that was used216

to generate the given abstract model by projecting out the proposition p, i.e,217

γp(M) =M′ if (M′,M) ∈ E and `(M′,M) = p else γp(M) =M.218

219

For a given lattice, if each node in M has an incoming edge for every propo-220

sition missing from its corresponding model then we will refer to such lattices221

as being Proposition Conserving lattices.222

Definition 4. A lattice L is proposition conserving-iff for any model M ∈ M223

(M = 〈PM, SM, AM, IM, GM〉) and ∀p ∈ P, if p is not in PM then there exists224

a model M′ ∈M, such that (M′,M) ∈ E and `(M′,M) = p).225

Notice that enforcing conservation of propositions doesn’t require any further226

assumptions about the human model and can be easily ensured while generat-227

ing the lattice. Additionally, we will call a proposition conserving lattice that228

contains an abstract node corresponding to each possible subset of P as the229
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Complete Abstraction Lattice for M given P. The earlier parts of this paper230

will assume a proposition conserving lattices as they will allow us to simplify231

discussions and provide efficient solutions. In later sections, we will relax these232

assumptions and will look at potential tradeoffs for using non-proposition con-233

serving lattices.234

We also assume that all abstraction functions used in generating the models235

in the lattice are commutative and idempotent, i.e., fp2
(fp1

(M)) = fp1
(fp2

(M))236

and fp1
(fp1

(M)) = fp1
(M). In the wider literature, a lattice is generally defined237

to have a unique maximal element and a unique minimal element. While the238

abstraction lattices we consider in this work will have a unique minimal element239

(i.e the most concrete nodes), we do not assume that the lattices have a single240

maximal node (Figure 2 presents an example lattice that does not have a unique241

maximal node), in that sense the abstraction lattice may be better understood242

as meet-semilattices, but we will use the term model lattice or abstraction lattice243

for convenience.244

As mentioned earlier, we consider an explanation generation setting where245

the human observer (H) uses a task model (this model will be denoted asMH =246

〈PH , SH , AH , IH , GH〉), that is a more abstract version of the robot’s model247

(MR = 〈PH , SR, AR, IR, GR〉). While the robot may not know MH , it knows248

that MH is a member of the set M for the lattice L. The human comes up249

with a foil set F = {π1, π2, ..., πm} that the robot needs to refute by providing250

an explanation regarding the task. The explanation should contain information251

about specific domain properties (i.e., state fluents) that are missing from the252

human’s model, how these properties affect different actions (For example, which253

actions use these propositions as preconditions and which ones generate/delete254

them) and how the inclusion of these fluents result in the invalidity of the given255

foils. To illustrate the utility of such explanations consider an example involving256

a simplified version of the rover domain mentioned earlier.257

Example 1. Let us suppose that the rover uses a modified version of the IPC258

rover domain [14] that also takes into account the battery level of the rover. Each259
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rover operation has a different energy requirement, and the battery level needs to260

be above a predefined threshold for it to execute them, e.g., it can perform rock261

sampling only if the battery level is above 75%. Furthermore, the rover needs to262

visit the base station (i.e., the lander) and perform a reset action to recharge its263

batteries.264

The rover knows that the human observer is at most ignorant of its energy265

requirements, ability to use solar cells and/or storage capabilities. So the model266

lattice L needs to consider abstractions corresponding to the following proposi-267

tions268

P={battery level above 25 perc, battery level above 50 perc,269

battery level above 75 perc, full store1, solar panels activated}.270

Figure 2 shows the lattice that the robot would use in this setting. Here we

will create each abstract model by following the process discussed in section 2.1.

For example, consider the action sample rock store0 w1, it has the following defi-

nition

〈{battery level above 75 perc, at w1, empty store1, has store store1}, {},

{full store1, has rock sample}, {empty store1, battery level above 75 perc}}〉

271

Now in an abstract version of this model, if the propositions full store1, bat-

tery level above 75 perc are dropped the definition becomes

〈{at w1, has store store1}, {},

{has rock sample}, {empty store1}}〉

272

Here the robot presents the plan

πR = 〈 navigate w0 lander, reset at lander,

navigate lander w1, sample rock store0 w1〉

and a naive observer may respond by proposing the foil set with a single plan

F = {〈 navigate w0 w1, sample rock store0 w1 〉}
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If the observer was an engineer, they might instead raise a foil that already

takes into account the energy requirements

F ′ = {〈 navigate w0 w1,

receive energy from solar cells, sample rock store0 w1 〉}

If the robot knew that the human was ignorant about all the battery level273

predicates and nothing else, the robot could help resolve the naive foil by in-274

forming them about the fact that action sample rock requires the battery to be275

above 75% (i.e describing the proposition battery level above 75 perc). In terms276

of the human model, this would involve setting the value of the proposition bat-277

tery level above 75 perc false in the initial state, updating the precondition of278

sample rock store0 w1 to include the fact (among other actions) and adding it279

as an add effect to the action reset at lander. In this updated model the human280

foil can no longer achieve the goal. In the case, of expert foil, the robot would281

need to inform the user about the proposition solar panels activated and that282

the action receive energy from solar cells require the solar panels to be activated283

which is not true for the rover. Thus in each case explanations to be provided to284

user can be generated once we know the set of propositions whose concretization285

is required to refute the given foils (henceforth referred to as explanatory fluent286

set).287

Definition 5. Let E = {p1, ..., pn} be a set of fluents, then E is said to be an

explanatory set for the human model MH and a foil set F if

∀π ∈ F, π(IγE(MH)) 6|=γE(MH) GγE(MH)

Where γE(MH) is the model obtained by applying the concretizations corre-288

sponding to E on the model MH .289

In the case of projection based abstractions of the form defined in Section290

2.1, we can directly provide the model components covered by the explanatory291

fluent set as part of the final explanatory message provided to the user. For292

other abstraction techniques, we may need to employ more specialized methods293
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Figure 2: A possible abstraction lattice for the rover domain.

to generate explanatory messages from the fluents. In Example 1 if we are to294

focus on the naive foil, the rover would have difficulty coming up with a single295

explanation as it does not know MH . However, it can restrict its attention to296

just the models that are consistent with the foils. In this scenario, it would297

correspond to {c2, c7, c8, c11, c12, c14, c15}.298

Now we need to find a way of generating sets of explanatory fluents given299

this reduced set of models.300

Proposition 1. Let Mi be some model in L such that MH v Mi. If E is301

explanatory for Mi and some foil set F , then E must also explain F for MH .302

This proposition directly follows from the fact that for a proposition con-303

serving lattice γE(Mi) will be a logical weaker model than γE(MH). Next, we304

will define the concept of a minimal abstracting set for a given lattice L and305

foils F306

Definition 6. Given an the abstraction lattice L = 〈M,E,P, `〉 and a foil set307
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F , the minimal abstracting set MF
min is the maximal elements of the subset of308

all the models that are consistent with F .309

MF
min = {Mi|Mi is a maximal element of Msat} where Msat = {M | M ∈310

M,∀π ∈ F (π(IM) |=M GM)}311

Proposition 2. For a given model lattice L, the minimal abstracting set MF
min312

is a subset of the maximal elements of the entire abstraction lattice.313

The above property ensures that when searching for the minimal abstracting314

set, we do not need to test the entire set of nodes or even need to know the315

entire lattice. In Example 1, the minimal abstracting set for the naive foil will316

be MF
min = {c14, c15}.317

If we can find an explanation that is valid for all the models in MF
min then318

by Proposition 1 it must work for MH as well.319

Proposition 3. For a given model lattice L and a set of foils F and the min-

imal abstraction set MF
min, there exists an explanatory fluent set E such that

∀ M′ ∈MF
min and ∀π ∈ F ,

π(IγE(M′)) 6|=γE(M′) GγE(M′)

It is easy to see why this property holds, as any explanation that involves320

concretizing all possible propositions in P satisfies this property.321

In most cases, we would prefer to compute the minimal or cheapest expla-322

nation to communicate. If all concretizations are equally expensive to commu-323

nicate to the explainee, then this would correspond to finding the explanatory324

fluents set with the smallest size. For the naive foil in the rover example, even if325

the human is unaware of multiple task details, the robot can easily resolve the326

explainee’s doubts by just explaining the concretizations related to the proposi-327

tion battery level above 75 perc without getting into other details. Describing the328

details of remaining propositions is unnecessary and in the worst case might329

leave the human feeling overwhelmed and confused. In this case, the explana-330

tion would just include information regarding battery levels and how to identify331
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when the battery level is or above 75% and model updates like332

sample rock-has-precondition-battery level above 75 perc333

sample soil-has-precondition-battery level above 75 perc334

...335

Before delving into the optimization version of the problem, let us look at the336

complexity of the corresponding decision problem337

Theorem 2. Given a the set of foils F and the corresponding minimal abstrac-338

tion set MF
min for a modelM, the problem of identifying whether an explanatory339

fluent set of size k exists for the complete lattice (which is not given) defined340

over an abstraction function f is NP-complete, provided the abstract func-341

tion generates planning models that belong to the class described in Section 2 in342

polynomial time.343

Proof (Sketch). The fact that we can test the validity of the given explanation344

in polynomial time (size of the explanation is guaranteed to be smaller than |P|)345

shows that the problem is in NP. We can show NP-completeness by reducing346

the set covering problem [15] to an instance of the explanation generation prob-347

lem. Let’s consider a set covering problem with U as the universe set and S as348

the set of sub-collections. Now let us create an explanation generation problem349

where the set of foils F is equal to U and the propositions in the set P contain350

a proposition for each member of S. Additionally concretizing with respect to351

a proposition will resolve only the foils covered by its corresponding subset in352

S. For this setting, the MF
min consists of a single node that contains none of the353

propositions (and hence all the foils hold) and the concrete model contains all354

of them. Now if we can come up with a set of explanatory fluents of size k in355

this setting, then this explanation corresponds to a set cover of size k.356

The above result considers a case where the lattice needs to be generated357

on the fly from the minimal abstraction set. Though there may be cases where358

the designer may be able to provide an explicit and smaller non-proposition359

conserving lattice upfront. As we will see in Section 4.1, such lattices can be360

used to capture the designer’s knowledge about the end-users.361
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4. Generating Optimal Explanations362

As mentioned earlier, we are interested in producing the minimal explana-363

tion. Additionally, in most domains, the cost of communicating the concretiza-364

tion details could vary among propositions. An explanation that involves a365

proposition that appears in every action definition might be harder to commu-366

nicate than one that only uses a proposition that is part of the definition of a367

single action.368

In addition to the actual size, the comprehensibility of the explanations369

may also depend on factors like human’s mental load, the familiarity with the370

concepts captured by the propositions, etc.. To keep our discussions simple,371

we will restrict the cost of communicating an explanation to just the number372

of unique model updates this explanation would bring about in the human373

model.We will use the symbol CEp to represent the cost of communicating the374

changes related to the proposition p and also overload it to be applicable over375

sets of propositions.376

Now our problem is to find the optimal explanation (represented as Emin)377

for a given set of foils F or more formally378

Definition 7. A set of fluents E is said to be the optimal explanatory fluent379

set for the human model MH and a foil set F , if380

1. if E is an explanatory set and381

2. there exists no other set Ê, such that Ê is also an explanatory set and382

CEE > CE
Ê

.383

Given the fact that the human model is not known to start with, it may384

appear that there is no way to generate optimal explanations for the human385

model directly. A possible alternative might be to try identifying the set of386

fluents that is optimal for the set of models that could beMH . Calculating such387

an explanation naively could be extremely expensive as identifying all possible388

candidates for the human model would involve testing each node in the lattice389

for whether its a potential candidate for the human model and then searching390
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over the space of all explanatory fluent set to find one that is optimal for the391

entire set of candidate models (where the optimality for a set of models is defined392

to be the cheapest set of fluents that is explanatory for all the models in the set).393

Thankfully, the properties of the lattice allow us to compute optimal solutions394

without keeping track of the entire set. Moreover, for lattices containing abstract395

models generated using procedures discussed in Section 2.1, we will see how396

fluent sets that are optimal for minimal abstracting set are still optimal for397

the original human model. That is uncertainty over human models results in no398

loss of optimality. But before proving that property, we will define the idea of399

the resolution set, that captures the specific plans resolved by concretizing the400

given propositions (i.e the proposition appears as an unsatisfied precondition or401

goal in the plan).402

Definition 8. For a set of models M′, a foil set F and a proposition p, the

resolution set RF (M′, p) gives the subset of foils that no longer holds in the

concretized models generated through f safe
Λ , i.e

RF (M′, p) = {π|π ∈ F ∧ (∀M′ ∈M′(π(Iγp(M′)) 6|=γp(M′) Gγp(M′) ∧

π(IM′) |=M′ GM′))}

The idea of generating resolution sets are again closely related to the idea of403

resolving counter-examples used in CEGAR based method. We will also use RF404

to also represent the set of foils resolved by a set of propositions. For notational405

convenience, we will use RF (M′, {}) to capture the subset of foils that do not406

hold in the current model set M′.407

Proposition 4. For a set of model M′ and a foil set F

RF (M′, {p1, p2}) = RF (M′, {p1}) ∪ RF (M′, {p2})

The above property implies that concretizing any n propositional fluents408

cannot resolve foils that weren’t resolved by the individual fluents. The above409

property follows from the fact that adding a proposition into the model only410
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resolves a foil if it adds a precondition not supported by previous actions in the411

plan. Since this is independent of other fluents already part of the abstraction,412

we can see that a set of fluents will only resolve the foils that are resolved by413

the individual elements of that set.414

Proposition 5. For two models M1, M2 and a set of foils F , if M1 =

f safeΛ (M2, {p1, .., pk}) then for any proposition p,

RF ({M1}, {p} ⊇ RF ({M2}, {p}) \ RF ({M2}, {})

The proposition can be established by following the definition of resolution

set and rewriting the lefthand side of the equation as

RF ({M2}, p) = RF ({M1}, {p1, .., pk} ∪ {p})

From Proposition 4 we know

RF ({M2}, p) = RF ({M1}, 〈p1, .., pk〉 · 〈p〉)

= RF ({M1}, p) ∪RF ({M1}, {p1, .., pk})

RF ({M2}, p) = RF ({M1}, 〈p1, .., pk〉 · 〈p〉)

= RF ({M1}, p) ∪RF ({M2}, {})

Now removing elements RF ({M2}, {}) from both LHS and RHS we get415

RF ({M2}, p) \ RF ({M2}, {}) = RF ({M1}, p) \ RF ({M2}, {})

Which proves our original assertion.416

This proposition directly leads to the following observation.417

Proposition 6. Let MF
min be the minimal abstracting set for a foil set F and418

MH be the human model. if every model in MF
min if formed from MH through419

f safeΛ , then for any fluent set Emin that is optimal for MF
min then Emin must be420

optimal for MH .421
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We can show the validity of the above proposition through contradiction.422

To start with from the definition of foils we know, RF ({MH}, {}) = ∅ and thus423

RF (MF
min, {}) = ∅. Let us assume there exists an explanatory set F1 that is424

optimal for human model but not optimal for MF
min. This could only be due to425

two possible reasons, i.e., F1 is not an explanatory set for MF
min or there exists426

another set F2 that is optimal for MF
min but not applicable for MH . Through,427

Proposition 5 we have already established that any explanatory fluent set for428

human model must be an explanatory set for MF
min. Similarly, from Proposition429

1, we know any explanatory set applicable for an abstract model set must be430

applicable for the concrete model as well.431

Now the question is how to exactly identify Emin, one possibility is to per-432

form an A* search [16] over the space of possible fluent sets to identify Emin.433

Each search state consists of the minimal set of abstract models for the hu-434

man model given the current explanation prefix. We will stop the search as435

soon as we find a state where the foils no longer hold for the current minimal436

set. In addition to the systematic search, we can see that the specifics of the437

setting also allows us to leverage greedy search (described in Algorithm 1). In438

each iteration of this search, the algorithm greedily chooses the proposition that439

minimizes
Cp

|F ′∩RF (M′,p)| , where F ′ is the set of unresolved foils at that iteration440

and the search ends when all foils are resolved.441

Theorem 3. The explanatory fluent set Ê generated by Algorithm 1 for a set of442

foils F and a lattice L = 〈M,E,P, `〉 is less than or equal to (ln k)∗CEEmin
, where443

CEEmin
is the cost of an optimal explanatory fluent set and k represents the max-444

imum number of foils that can be resolved by concretizing a single proposition,445

i.e, k = maxp |RF (Mmin, p)|.446

Proof (Sketch). We will prove the above theorem by showing that Algorithm 1447

corresponds to the greedy search algorithm for a weighted set cover problem.448

Consider a weighted set cover problem 〈U, S,W 〉 such that the universe set U =449

F , the subcollections set S is defined as S = {sp|p ∈ P} where sp = RF (Mmin, p)450

and the cost of each subset sp is gives as W (sp) = CEp . Proposition 4 ensures451
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Algorithm 1 Greedy Algorithm for Generating Ê

1: procedure Greedy-exp-search

2: Input : 〈F,L = 〈M,E,P, `〉〉

3: Output : Explanation Ê

4: Procedure:

5: curr model = 〈Mmin, F 〉

6: Ê = {}

7: Mmin ←MinimalAbstractModels(L, F )

8: Precompute the resolution sets RF (Mmin, p) for each p ∈ P

9: while True do

10: M′, F ′ = curr model

11: if |F ′| = 0 then return Ê . Return Ê if all the foils are resolved

12: else

13: pnext = argmin
p

(
Cp

|F ′∩RF (M′,p)| )

14: Mnew = {γpnext
(M)|M ∈M′}

15: curr model = 〈Mnew, F \ RF (M′, p)〉

16: Ê = Ê ∪ p
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that the size of resolution set is a submodular and monotonic function. In452

this setting, the act of identifying a set of propositions that resolve the foil453

set is identical to coming up with a set cover for U in the new weighted set454

cover problem. Furthermore, we can show that the optimal set cover Copt must455

correspond to the cheapest explanation Emin (We can prove this equivalence456

using Propositions 1,3 and 4, we are skipping the details of this proof due457

to space constraints). Algorithm 1 describes a greedy way of identifying the458

cheapest set cover for this weighted set cover problem and thus the minimal459

explanation for the original problem. For weighted set cover the above greedy460

algorithm is guaranteed to generate solutions that are at most ln k ∗W (Copt)461

[17], where k = maxs∈S |s| and this approximation guarantee will hold for Emin462

as well.463

We can use this algorithm to either generate solutions and or to calculate an464

inadmissible heuristic for the previously mentioned A* search. For the heuristic465

generation, we will further simplify the calculations (specifically step 8 in Algo-466

rithm 1) by considering an over-approximation of RF . Instead of considering467

the set of all foils resolved by concretizing each proposition p, we will consider468

the set of foils where p appears in the precondition of one of the actions in it.469

This set should be a superset for RF for any proposition.470

Now that we have formulated the basic form of explanation for this setting,471

we will look at how we can relax some of the assumptions made in earlier sections472

and how it effects the explanation generation problem. In particular, we will473

look at cases where the lattices are no longer proposition conserving, the users474

may be raising foils that are sub-optimal as opposed to invalid and finally how475

to support models with noise.476

4.1. Supporting Explanation Generation for Non-Proposition Conserving Lat-477

tices478

Proposition conserving lattices, in particular, complete lattices provide a479

concise way for the problem designer to specify their knowledge about the end480
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users. In fact, with well-defined abstraction functions, they need only specify481

the most concrete model and the set of most abstract models to generate the482

rest of the lattice. Unfortunately, there may be cases where such lattices may no483

longer be enough to capture all information the system designer may be capable484

of providing about the end users. For example, consider a scenario where a robot485

needs to put away groceries. The goal of the robot here is to put away a set of486

items in prespecified storage locations. In this case, medicines need to be put487

in the medicine cabinet while condiments should be placed in kitchen shelves.488

In addition to these task-level constraints, the robot’s operations are restricted489

by various motion level constraints that limit the possible physical movements490

that the robot can perform, including possible ways an object can be grasped491

and areas in the workspace it can reach. Clearly, these two types of constraints492

are quite different in terms of the background knowledge needed to understand493

them. While the task constraints correspond to some simple rules of the task494

that are easy to explain to a lay user, understanding the motion constraints495

require knowledge about robotics that is usually absent in most users. Thus496

there is a natural hierarchy in the concepts related to this task. One way to497

capture such information could be by controlling the order in which the various498

fluents are considered for abstraction, i.e., remove a particular set of fluents be-499

fore moving to others (thereby making the lattice non-proposition conserving).500

This means, the easier to understand fluents would get introduced higher up501

in the lattice and the harder to understand fluent appear lower in the lattice502

closer to the concrete node. The task mentioned above is a particularly good503

fit for non-proposition conserving lattices because even the motion constraints504

could be captured at multiple conceptual levels. In general, non-proposition505

conserving lattices are a useful tool to use when you have settings where there506

are different propositions that capture the same phenomena but at varying lev-507

els of detail or focus on different aspects. For example, in the case of picking508

up an object, one could talk about the ability to pick up the object, picking up509

the object by grasping a particular region and even grasping using a particular510

grasp point on the object. We can organize the lattice in such a way that the511
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propositions are visited in the order that reflects the preferences of the end-user.512

For example, for this scenario, we can arrange the concepts in such a way that513

simpler concepts (for example propositions related to simple reachability) are514

tested before moving onto more complex concepts.515

While there are reasons to choose non-proposition conserving lattices and we516

could generate explanations using such lattices with some minor modifications517

on the solution method described before, the use of such lattices also have a518

few disadvantages. The obvious one being that the designer now have to fully519

specify such lattices, also the use of such lattices prevents the use of heuristics520

and greedy search described in earlier sections. It should also be noted that521

when the foils can only be resolved by introducing fluents from lower levels then522

the search would still need to search through all the nodes in the above before523

identifying the nodes that resolve the foil. Also once such a node is identified, it524

won’t be easy to separate the set of fluent that actually contribute to resolution525

from those that are redundant (particularly when there are multiple foils).526

To overcome these shortcomings, we will allow designers to specify a non-527

proposition conserving lattice while the explanation generation algorithm itself528

operates on a modified proposition conserving lattice that uses an updated cost529

function. To achieve this, we will start by defining the concept of a well-formed530

lattice531

Definition 9. An abstraction lattice L = 〈M,E,P, `〉 is said to be well formed,532

if there exists a unique minimal node (i.e the most concrete model), thus for any533

model M∈M, M# vM.534

Any lattice we describe hence forth, will be assumed to be well-formed unless535

specified otherwise. While the concept of minimum abstraction set remains the536

same for a non-proposition conserving lattice, analyzing the results of concretiz-537

ing the human model with respect to explanatory fluents requires us to look at538

a new concept named a completion of a lattice.539

Definition 10. For a given well formed non-proposition conserving abstraction540

lattice L = 〈M,E,P, `〉, a second lattice L̂ = 〈M̂, Ê,P, ˆ̀〉 is said to be a com-541
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pletion if L̂ is a proposition conserving lattice, such that, M ⊆ M̂, E ⊆ Ê and542

` ⊆ ˆ̀
543

A completion is relevant in this setting, because if we allow the system to544

freely choose propositions for the explanatory set, the updated human model (i.e545

the model obtained after the explanation) may not be part of the original non-546

proposition conserving lattice but is guaranteed to be part of the completion.547

Note that completions for a non-proposition conserving lattices are not unique,548

but in most cases we will consider a minimal completion. We can create such a549

completion by starting with the given lattice and adding any missing incoming550

edges iteratively (introducing new models only if there exists no current nodes551

that correspond to the set of missing propositions expected at the source of the552

edge).553

Definition 11. Given a non-proposition conserving lattice L = 〈M,E,P, `〉, it’s

completion L̂ = 〈M̂, Ê,P, ˆ̀〉, the human model MH ∈ M and the foil set F , a

set of propositions E = {p1, ..., pn} is said to be a set of explanatory fluents if

∀π ∈ F, π(IγE(MH)) 6|=γE(MH) GγE(MH) and γE(MH) ∈ M̂

As the original human model is assumed to be part of the given lattice, it554

must be part of the completion as well, moreover, the relation between the min555

abstraction set and the human model is conserved in the completion as well.556

This means that any set of explanatory fluents identified by using the minimum557

completion of the given lattice would also be valid for the human model as well.558

Such a minimal completion lattice, need not be created beforehand, but could559

in fact be generated online when searching for the explanation. Unfortunately,560

directly using such a completion lattice for explanation generation (once the min561

abstraction set is found), would result in finding sets of propositions that ignore562

the information captured by the given lattice. To incorporate this information563

we need to not only use the completion we need to consider a new cost function564

CEL for the explanation generation.565

Proposition 7. Given a min abstraction set Mmin for a non-proposition con-566
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serving lattice L = 〈M,E,P, `〉, we can use it’s completion L̂ = 〈M̂, Ê,P, ˆ̀〉 to567

identify the explanatory fluents provided the cost of explaining a given proposi-568

tion p is defined as CEL(p) = CEp + max
M∈Mmin

L(p,M), where L(p,M) is a penalty,569

such that L(p,M) ∝ CE
P̂

where P̂ is the least costly set of propositions such that570

p ∈ P̂ and γP̂ (M) ∈M.571

This new penalty term ensures that a proposition is considered for expla-572

nation only after the propositions from higher levels of the given lattice is con-573

sidered. Now that we are dealing with explanations using a new proposition574

conserving lattice, all earlier results directly carry over including the heuristic,575

though the search is less efficient as calculating the cost for each node requires576

lookup of the given lattice. Since the proposition conserving lattice is assumed577

to be provided upfront, we may be able to precompute the costs.578

4.2. Supporting Explanations for Sub-optimal Foils579

We will now consider scenarios where the explainee raises foils that are valid580

but may, in fact, be costlier than the one chosen by the robot. In such scenarios,581

we would want the robot to explain why the current plan may be preferred, but582

such explanations could be complicated by the fact that the actions in the583

domain may have state-dependent costs, for example, the cost of picking up a584

light block may be lower than picking up a heavier block. Here we would again585

need to present the user with a set of fluents and associated action costs that586

allow the user to correctly evaluate their alternate plans.587

To investigate this setting, we will restrict our attention to cases where each588

action could be associated a set of positive conditional costs. We will consider589

a slightly updated action definition, where each action a for a model M is now590

defined by a tuple of the form 〈preca, e+
a , e
−
a , CMa 〉, where preca, e

+
a and e−a are591

same as before and Ca are the set of state dependent costs associated with the592

action a. CMa is itself defined as a set of individual costs of the from 〈φ, c〉,593

where φ is a conjunction of state literals, which when satisfied in a state causes594

the action a to induce a cost c (where c ∈ R≥0). Now the cost of executing the595

action a at state s is defined596
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CMa (s) = Σ〈φi,ci〉∈CMa (δ(φi, s, ci))

Where δ(φi, s, ci) = ci if s |= φi else δ(φi, s, ci) = 0.597

We will use the function CM to return the total cost of a plan for a given598

initial state, i.e, for a plan π = 〈a1, ...., an〉 and an initial state I, CM(π, I) =599

CMa1
(I) + ...+ CMan (an−1(...(a1(I))...)).600

Following the convention set by [18], we can assert that such a domain model601

induces a transition system of the form T = 〈S, s0, Sg, L, T, CT 〉, which is similar602

to the original transition system definition except that now each transition is603

associated with a cost determined by both source state and action. An abstract604

model M′ with a transition system T ′ for a set of propositions Λ is defined in605

a similar way with the cost of each transition (s, a, s′) given by CT ′
(s, a, s′) =606

min({CT (ŝ, a, ŝ′) | ŝ, ŝ′ ∈ S ∧ fΛ(ŝ) = s ∧ fΛ(ŝ′) = s′)}).607

We will also update the explanatory setting a bit and assume that the robot608

presents the user with the plan and the anticipated cost of the plan in the most609

concrete model (denoted as CπR
). The user responds by providing a foil set610

which they believe is less costlier than the plan in question. Here we can define611

a set of explanatory fluents to be612

Definition 12. A set of proposition E = {p1, ..., pn} is said to be explanatory

fluents for the human model MH and a foil set F if

∀π ∈ F, π(IγE(MH)) 6|=γE(MH) GγE(MH) ∨ CMH (π, IγE(MH)) > CπR

Revisiting the abstraction lattice, given the fact that we are dealing with613

only positive costs, the first property we can assert is that614

Proposition 8. Given two models M1 and M2, such that M1 v M2, then615

for any plan π, we have C(π, IγE(M1)) ≥ C(π, IγE(M2))616

This means that once we establish that a given foil is costlier than robot plan617

in a model, then it holds in all models that are more concrete than that one. This618

insight allows us to reassert Proposition 1 for this new extended definition of619
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explanation and by extension allows us to use the idea of the minimal abstraction620

set in this new setting (Proposition 2 holds here as well).621

This means that we can more or less directly use the search method discussed622

for the in-validity case here directly. Unfortunately, in this setting the size of623

resolution set is no longer sub-modular and hence we can not leverage the greedy624

method discussed for the pure invalidity case.625

4.3. Supporting Explanations in the Presence of Human Models with Incorrect626

Beliefs627

An underlying assumption for most of the earlier discussion has been the628

fact that the user’s model of the task can be represented as an abstraction629

of the robot model, i.e. the user model may be imprecise but not incorrect.630

Unfortunately, this is not an assumption that can be met in all scenarios. More631

often than not, the user may not only be unaware of certain facts pertaining to632

the task but may also hold incorrect beliefs about it. Throughout this section,633

we will discuss how approaches discussed in earlier sections can be used to handle634

such cases.635

Formally, let the real (but unknown) user model beMH and we assert that636

this model is an abstraction of some (again unknown) model M̂R that is defined637

over the same set of fluents as MR, but may have errors in regards to action638

definitions, perceived initial and goal state. Let us assume both M̂R and MH639

belong to the same class of planning problems as defined in Section 2. Again let640

the set of alternate plans raised by the user be F . It is important to note that the641

reason the user thinks these foils are valid may no longer be just due to missing642

fluents, but could also be due to the user’s incorrect understanding of the task.643

This means that foils are not an accurate way of identifying the user’s level of644

understanding, but we can still use the foils to figure out the level of abstraction645

at which the foils can be refuted. Though in scenarios with such models, we have646

to consider a complete lattice that contains all possible fluents (i.e assuming user647

could be wrong about the use of any of the fluents), i.e., the lattice we will use648

would be L = 〈M,E,P, `〉, where P = PR (defined using fsafeΛ ). We can now649
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use the methods described in earlier sections to find a set of explanatory fluents650

E that can refute the given set of foils. Once the information regarding the651

explanatory fluents in provided to the user, irrespective of the other fluents, the652

user should have a correct understanding of each fluents listed in E . LetMH+E653

be the updated human model that contains the correct information about E .654

Note that even though MH or MH + E may not be part of L, the abstraction655

of this updated human model that projects out all propositions absent from656

E must be part of the lattice L, i.e, fP\E((MH) + E) ∈ γE(Mmin). In this657

scenario, γE(Mmin) will be singleton set and we will represent the only element658

in this set as Mmin. As per the definition of valid explanation, we know that659

RF (Mmin, E) = ∅ and since γE(MH) v γE(Mmin) and therefore the resolution660

set for γE(MH) must also be empty.661

5. Evaluations662

5.1. Empirical Evaluations on Explanation Generation for Invalid Foils663

For our empirical evaluation, we wanted to understand how effective our664

basic approaches were in terms of the conciseness of the explanations produced,665

the solution computation time and the usefulness of approximation. For the ap-666

proximation, we were interested in identifying the trade-off between decrease in667

runtime vs. reduction in solution quality. Since both explanation for incorrect668

beliefs and non proposition-conserving gets compiled down to finding explana-669

tion on proposition-conserving lattices, we didn’t perform separate evaluations670

for those methods. All three explanation methods discussed in this paper (blind,671

heuristic and greedy) were evaluated on five IPC benchmark domains[14]. All672

the experiments detailed in this section were run on an Ubuntu workstation673

with 64G RAM.674

For each domain, we selected 30 problems from either available test sets675

or by using standard problem generators (the problems sizes were selected to676

reflect the size of previous IPC test problems). The lattice for each problem-677

domain pair was generated by randomly selecting 50% of domain predicates678
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Figure 3: The graph compares the performance of greedy set cover against the optimal

blind search for |F | = 4. It plots the average time saved by the set cover and the

average increase in cost of the solution for each domain.

and then generating a fully connected proposition conserving lattice using that679

set of predicates. Since none of the models contained any conditional effects,680

we created the abstract models by dropping the propositions to be abstracted681

from the domain models (which are complete for these domains). The foils were682

generated by selecting random models from the lattice and creating plans from683

these models that do not hold in the concrete model. Each search evaluated684

here, generates the set of proposition whose concretizations can resolve the foils685

set F . In actual applications, this set of propositions needs to be converted into686

an explanan (the actual message) by considering how this proposition is used687

in the robot model. Figure 4 shows the explanation generated by our approach688

for a problem in Rover domain.689

Table 1 presents the results from our empirical evaluation on the IPC do-690

mains. The table shows the average cost/size of each explanation along with691

the time taken to generate them. Note that by size, we refer to the number692

of predicates that are part of the explanation while the cost reflects the total693

number of unique model updates induced by that explanation. We attempted694

explanation generation for foil set sizes of one, two and four per problem.695

Our main conclusion is that heuristic search seems to outperform blind696
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Figure 4: An example explanation generated by our system for IPC rover domain.

The human incorrectly believes that the rover can communicate sample information

without explicitly collecting any samples. While the abstraction lattice in this example

was generated by projecting out upto 12 predicates, the search correctly identifies

concretizations related to (have soil analysis ?r - rover ?w - waypoint) as the cheapest

explanation (CE
E = 2 as opposed to CE

P = 55)

search in almost every problem and generates near-optimal solutions (Blind697

search always generates the minimal explanation). Further, we saw that greedy698

search outperformed heuristic search in most cases barring a few exceptions.699

The greedy search was able to make significant gains especially for higher foil700

set sizes. This is entirely expected due to the fact that step 8 in Algorithm701

1 can be expensive for problems with long plans (but still polynomial). This702

expensive pre-computation pays off as we move to cases where Emin consists703

of multiple propositions. Additionally, we found out that greedy solutions were704

quite comparable to the optimal solutions with respect to their costs. For exam-705

ple in |F | = 4 for satellite domain, while the greedy solution cost took a penalty706

of ∼ 1.4% the search time was reduced by ∼ 68%. Figure 3 plots the compari-707

son between the time saved by the greedy search versus any loss in optimality708

incurred by the greedy search.709
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5.2. Empirical Evaluations on Explanation Generation for Sub-optimal Foils710

Next, we wanted to evaluate the empirical performance of the approach for711

domains with state dependent cost. For this setting, since we don’t have stan-712

dard benchmark domains with this property, we chose standard IPC domains713

and modified them to include conditional cost updates. In particular, we chose714

blocksworld, zenotravel, gripper and rover. For blocksworld, we introduced715

three new predicates, namely heavy, light and unsteady each of which takes a716

block as an argument. For each problem instance, we assigned each block to be717

either heavy or light and set some of the blocks as unsteady. We also updated718

the stack action so that stacking a heavy block on a light one or an already719

unsteady one cause the block to be unsteady. We also set a high cost penalty720

for stacking any block on an unsteady one. For zenotravel, we came up with721

three binary predicates near, farther and farthest that takes cities as arguments.722

We also assigned a higher cost for traveling between far away cities than nearby723

ones (so the optimal plan may involve the plane making a lot more stops). For724

gripper, we again mark a ball to be heavy or light and now each robot can also725

pick up two balls at the same time. We assign a high cost to picking up heavy726

balls and picking up the second ball in a gripper that is already holding a ball.727

We also provide the robot with a push action, that allows for it to move heavy728

balls without accruing large cost.Finally in the case of rover domains, we set729

some of the waypoints as being hilly area and communicating from these way-730

points are assigned higher costs. Table 2 presents the explanation generation731

time and average explanation sizes for the modified domains. For each domain,732

we generated five problems and the test was run using systems of the same con-733

figuration as Section 5.1. For Blocksworld we considered instances where the734

number of blocks spanned from four blocks to 20, for Gripper all problems had735

two rooms and up to 12 balls and for Rover domain problems had upto three736

objectives and four waypoints. Finally, in Zenotravel all problems considered737

traveling between 10 cities and the number of passengers ranged from 20 to738

60. The fact plan being explained were generated using optimal planners when739

possible and the foils were generated either using a satisficing planner (Metric-740
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Domain Average Explanation Size Runtime

BLOCKS 4.4 8.319

Gripper 5.4 7.368

Rover 4 9.690

Zeno 6.6 8.905

Table 2: The sample runtime and average explanation size for five problem instances

from the modified domains.

FF [19]) or hand written using knowledge about the domain. As expected, the741

search was able to find the minimal number of predicates to be included into742

the problem to resolve the foils, for example in Blocksworld, the approach was743

able to correctly identify the predicate unsteady as being enough to explain the744

foils in the example.745

In addition to the empirical results discussed in this paper on classical plan-746

ning problems, the approaches discussed have also shown to be useful in model-747

ing explanatory dialogue in the context of Task and Motion Planning (as shown748

in [20]).749

5.3. User Study to Evaluate Role of Abstractions in Explanation750

In this section, we will consider one of the assumptions that we made751

throughout the work, namely that providing the explanations at an abstract752

level would help reduce the cognitive burden on the user’s end. Specifically, we753

will test the following hypothesis754

Hypothesis 1. Given two models M1 and M2, such that M1 @M2 and M2755

is formed using methods presented in Section 2.1, a user would find it easier to756

work with the more abstract model M2 when compared to M1757

We will evaluate this hypothesis over two different dimensions. One with758

respect to the subjective workload the user may experience when working with759

such a model to achieve some task, and then with respect to the actual ability760

of the user to successfully complete the task. For the former, we will employ761
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NASA-Task Load Index (NASA-TLX) survey [21], while for the latter we mea-762

sure the time taken by the user to complete the task. NASA-TLX is a very763

influential and widely used method to gauge the subjective workload experi-764

enced by the user. NASA-TLX, divides the workload of a task over six different765

dimensions; namely, Mental Demand, Physical Demand, Temporal Demand,766

Effort, Performance, and Frustration. The users are first asked to rate the task,767

across these dimensions on a 20 point scale (with larger value denoting higher768

workload). They are then required to provide relative weights across these di-769

mensions, by making pairwise choices between these different dimensions. A770

weighted average of the ratings provided across these dimensions is then used771

as a measure of the workload.772

For the actual study, we relied on a between-subject study design, wherein773

the study participants are divided into two groups. All study participants were774

students from ASU. One received abstract explanations and the other group was775

given concrete domain model information as explanations. As the task in ques-776

tion, we used a variation of the Sokoban domain, that involves the agent pushing777

a box to a pre-specified domain. Unlike the common versions of Sokoban, this778

variant involved the robot needing to first turn on a switch before pushing the779

boxes. Each participant in the study was allowed to play the game through a780

web-interface (which is shown in Figure 5, along with a sample explanation).781

While they were told the actions they can perform, they weren’t told what782

each of the action achieves or their preconditions. Each player was allotted a783

total time of five minutes to complete the game. As the users play the game784

and if they perform an invalid action, they were provided with an explanation785

appropriate for their group.786

For both groups, the current action sequence being executed was treated as787

the foil and the explanation consisted of the following information; the state at788

which the sequence failed, the specific action that failed, the expected set of pre-789

conditions, the failed precondition, and lifted model information about relevant790

actions. While one group of users were shown the information with respect to791

the concrete model, i.e., they were shown the full state, all the preconditions,792

34



Figure 5: Screenshots from the user interface exposed to the end user. (A) The par-

ticipant is shown the current state of the game, they are allowed to control the agent

via their keyboard and whenever they perform an invalid action, they are shown a

possible explanation. (B) and (C) presents a sample explanation provided to partic-

ipants who were exposed to abstract explanations. Here the current state shown to

the participant is empty as none of the facts are true in that state.

all failed preconditions, and the entire model of the task, the second group793

was shown the abstracted version of each of the above-mentioned information.794

The level of abstraction for this group is identified based on the foil failure. To795

make sure the explanation generation time is symmetric between the groups, we796

avoided search to identify the best level of abstraction and rather we simulated797

the failing foil in the most concrete model and randomly selected the predicate798

corresponding to one of the failing precondition to generate the abstract models.799

While this may result in a more detailed model than required, as we will see,800

even with this simple approach we did see a significant difference between the801

two groups. We also carried over predicates from consecutive failures, so the802

users of the second group saw increasingly more concrete models if they failed803

repeatedly (though still more abstract compared to the first group).804
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Scale Concrete-Explanation Group Abstract-Explanation Group

Effort 1.595 1.252

Frustration 2.5 2.19

Mental Demand 2.9 1.414

Performance 1.186 1.705

Physical Demand 0.038 0.152

Temporal Demand 1.929 1.719

Table 3: The weighted average workload reported by the participants of the user study

across the individual scales used in NASA-TLX.

In total, we collected responses from 28 participants, 14 of whom had access805

to concrete explanation (henceforth referred to as Concrete-explanation group),806

and the remaining 14 were provided with abstract explanation (i.e the Abstract-807

explanation group). While the Concrete-explanation group on average took808

200.857 secs to finish the task, the abstraction group only took 163.5 seconds.809

In terms of the weighted average workload for the Concrete-explanation group,810

we saw 10.147 and for the Abstract-explanation group, we found it to be 8.433.811

The distribution across the six scales are presented in Table 3. As seen from the812

table, in all but Performance and Physical demand, people reported a higher813

workload for the concrete explanation group. We see a particularly significant814

difference across the mental demand dimension, which was the main focus of815

the assumptions made by our work. Thus the results from both the subjective816

workload study, and the performance of the user (measure in terms of the time817

taken by the user to finish the task), conform to our original hypothesis and818

we see that the use of abstractions provides a distinct advantage over providing819

complete details.820

6. Related Work821

There is increasing interest within the automated planning community to822

solve the problem of generating explanations for plans ([22, 23]). Earlier works823
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like [3, 4, 24] looked at explanations as a way of describing the effects of plans,824

while works like [25, 26] looked at plans itself as explanations for a set of obser-825

vations. Another approach that has received a lot of interest recently is to view826

explanations as a way of achieving model reconciliation [27]. Such explanations827

are seen as a solution to a model reconciliation problem (referred to as MRP)828

and this approach postulates that the goal of an explanation is to update the829

model of the observer so they can correctly evaluate the plans in question. The830

methods discussed in this paper can be seen as performing a type of model-831

reconciliation, but one could also leverage the methods discussed here to relax832

some of the assumptions made by model-reconciliation works for certain condi-833

tions We discuss the relationship between model-reconciliation and the methods834

studied in this paper in more detail in Section 7.1835

As noted, our work is closely related to the well studied method of counter-836

example guided refinement or CEGAR that was originally developed for Model837

checking [5]. Many planning works have successfully used CEGAR based meth-838

ods to generate heuristics for plan generation [8, 28]. The idea of foil resolution839

set for a given concretization is also closely related to the process of identifying840

spurious counter examples employed by CEGAR based methods (cf. [29, 9, 30]).841

One major difference between our work and standard CEGAR based methods842

is the fact that in our setting the abstract model producing the foil (or counter-843

example) is unknown. Since we are exclusively dealing with spurious counter-844

examples we are also not bound to testing our foils (in other words identifying845

faults or pivot states) in the most concrete model (which could be quite ex-846

pensive). Further, traditional CEGAR methods are generally not as focused on847

identifying the cheapest refinements.848

Many abstraction schemes have been proposed for planning tasks (starting849

with [7]), but in this paper, we mainly focused on state abstractions and based850

our formulation on previous works like [13] and [12]. It would be interesting851

to see how we can extend the approaches discussed in this paper to handle852

temporal and procedural abstractions (e.g., HLAs [31]).853

There exists a rich body of literature that has debated and discussed the role854
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of abstraction in Social sciences (cf. [32, 33] for arguments towards abstraction,855

while [34] argues for adding more details provided the task constraints allow856

for it). Unlike these works that study explanation in everyday scenarios, expla-857

nation in the context of AI systems have a markedly different flavor, in so far858

that the explainer may be representing and reasoning about the task at levels of859

details that may be too hard for the users to understand. Thus abstraction can860

be a powerful tool in identifying just the required level of information to allow861

people to achieve their goals. This is an intuition being leveraged by more and862

more works to help generate explanations or even decisions that are easier to863

understand. For example, state abstractions have been leveraged by [35] to gen-864

erate simpler models that generate easier to understand policies, and [36] uses865

abstraction to simplify policies. Even in the realm of machine learning explana-866

tions, abstractions have been considered as a way to generate multi-resolution867

explanations [37]. The importance of adjusting the level of details for different868

users have also been considered and argued in [38], where they propose three869

levels of explanations, namely, high-level, low-level, and co-created level expla-870

nations. While high and low-level explanations focus on generating summaries871

and detailed descriptions respectively, co-created explanations use the user in-872

teraction to determine the contents of the explanation. Our specific methods873

could be considered closely related to the co-created explanation studied in the874

paper.875

There have also been recent works that have looked at generating contrastive876

explanations for planning. Some significant examples for these include works877

like [39] and [40]. Both these cases treat the cause of user’s confusion to be878

their limited computational capabilities and the explanations tend to help them879

realize the consequences of following the foil without worrying about model880

reconciliation.881

A closely related but distinct form of explanations is the one where the882

explanan (i.e. the information provided to the explainee) constitutes a counter-883

factual example [41]. Such explanations are particularly popular in classification884

settings, where when queried about an inexplicable classification, the system re-885
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sponds with a counterfactual example where the desired decision may have been886

made. Note that in such cases, the system needs to focus on generating counter-887

factual instances that the user would find acceptable. Many recent works have888

looked at identifying desirable properties for such counterfactual explanations889

(cf. [41, 42]), and some of the prominent ones identified in the literature include,890

making sure the counterfactual example is close enough to the decision-point in891

question and the counterfactual is plausible, in terms of not only being a plau-892

sible datapoint but also that it is actionable. Actionability can be particularly893

important in domains like loan approval, wherein the counterfactual represents894

the changes the user needs to make to achieve the desired outcomes. Note that895

in our method, it is the user who is responsible for generating the counterfac-896

tual example and as such is guaranteed to come up with foil they believed to897

be most likely or most useful. Thus our focus has been on ensuring that the898

explanations generated in response meet the desired properties discussed in the899

literature. As discussed above, our explanations do meet many of the important900

requirements discussed in the literature including being selective and social.901

7. Conclusion and Discussion902

In this paper, we investigated the problem of generating explanations when903

the explainee understands the task model at a higher level of abstraction. We904

looked at how we can use explanations as concretization for such scenarios and905

proposed algorithms for generating minimal explanations. One unique aspect906

of our approach is the use of foils as a way of capturing human confusion about907

the problem. This not only helps us formulate more efficient explanation gen-908

eration methods but also aligns with the widely held belief that human expect909

contrastive explanations (cf. [43, 44]). Moreover, in most real-world scenarios910

humans usually include the foil in the request for explanations unless the foil911

is quite apparent from the context. The use of state abstractions in explana-912

tions also allows us to reduce the cognitive burden imposed on the user for913

understanding the explanations. Below we have provided some more detailed914
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discussion on the nature of explanation generated by the methods discussed in915

the paper and some future work.916

7.1. HELM and Model Reconciliation Explanation917

As mentioned earlier, the methods discussed in this case could be seen as a918

special case of model reconciliation [27]. Here the model updates are limited to919

model concretization and the human’s model is an abstraction of the original920

model. Rather than assuming that we are given an explicit human model,921

we assume that the human model belongs in the set of possible models that922

corresponds to the various abstractions of the robot model. In this sense, this923

method is also comparable to the work done on generating explanations for a set924

of possible models [45], and in particular to the conformant explanations studied925

in that paper. Though unlike [45], in this setting we can guarantee that the926

conformant explanation is also minimal for the unknown human model (provided927

all model updates and hence explanations are restricted to model concretizations928

over fluents). Our use of minimal abstractions for explanations also allows the929

methods to handle cases where the user questions arise due to a mismatch in930

the inferential capabilities and not just a mismatch in the knowledge about the931

task. While the original model reconciliation work focused on explanations that932

address all possible foils, our work specifically tries to address foils raised by the933

user. This allows us to provide more concise explanations and allows us to scale934

to larger problems as compared to the original MRP approaches.935

Another way to connect this work with model reconciliation is to leverage936

the insights from Section 4.3, to show that the method described in this pa-937

per can also be used in the more general model-reconciliation setting. Section938

4.3 shows that for the class of planning problems studied in this paper, even939

when the human model may not meet the assumption that it is, in fact, an ab-940

straction of the original robot model, we can still generate an explanation that941

refutes the given set of foil using abstractions formed from the robot model.942

Provided we use a complete abstraction lattice which contains a single maximal943

node formed by projecting out all the propositions. This means for explana-944
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tory queries related to just refuting alternate plans, abstraction lattices give us945

a way to circumvent one of the most restrictive assumptions made in model-946

reconciliation works, namely the need to know or learn the human model. As947

discussed in Section 4.3, the explanations generated over abstraction lattices948

will remain valid model-reconciliation explanations regardless of how the hu-949

man model may be different from the robot model (provided it is still of the950

form described in Section 2 and doesn’t contain any fluents absent from the951

robot model). Though compared to model-reconciliation techniques like those952

studied in [27, 45], the methods discussed in this paper could generate much953

larger explanations. For one, the explanations here involve providing informa-954

tion about all the uses of the explanatory fluents in the robot model, many955

of which the user may already know. This approach can also be extended to956

generate explanations of unsolvability and for partial foils of the type discussed957

in [46].958

7.2. Properties of Explanations959

The prior work on explanation as model reconciliation [27] mainly used four960

properties to characterize the various types of explanations that were introduced961

in the paper. These properties were Completeness, Monotonicity, Conciseness,962

and Computability. We too can use these properties to describe the explanations963

we have looked at (with small updates to meet our specific setting).964

Any explanation generated by our methods will be complete and monotonic.965

While [27] defines a complete explanation as one that guarantees optimality966

of the plan under question. For our scenario, a complete explanation can be967

redefined as one that resolved all the given foils (|RF (Π′, E)| = |F |). [27]968

considers an explanation monotonic if no future explanation can invalidate it.969

In our setting, this means that once a foil has been resolved by an explanation,970

no future explanation (or model concretizations) can reintroduce it. Which is971

satisfied by any explanation as concretization.972

As for the remaining two properties (Conciseness and Computability), the973

definitions laid out in the original MRP paper directly applies for our setting974
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as well. Similar to MRP explanations, computability and conciseness remains975

incompatible properties for explanations in our case too. The explanations that976

are easier to compute end up being neither concise nor easy to understand. For977

example, one simple strategy to provide explaining a plan would be to provide978

enough details to the explainee that the human model completely converges979

to the robot model, but this strategy could be extremely expensive and even980

unnecessary.981

In addition to properties discussed in [47], works in social sciences have also982

prescribed some essential characteristics for what would be considered useful983

explanations by people [2]. Chief among them is generating contrastive expla-984

nations, which remains the central thrust of the methods discussed in this work.985

The other two properties usually cited by such sources are selectiveness and be-986

ing social. An explanation is considered selective if it chooses to focus only on987

the aspects relevant to the current explanatory query. As such this is directly988

related to the minimality of explanation and thus the methods discussed in this989

paper can be considered to be selective. On the other hand, an explanation is990

considered social if it is tailored to the user’s background. Our method supports991

this property in two distinct ways, one by explicitly trying to localize the user’s992

model on the abstraction lattice, and by allowing the abstraction lattice itself993

to be tailored to reflect the preferences of the users.994

7.3. Other Explanatory Queries995

The explanatory approaches discussed in this paper have mostly focused on996

helping users resolve their confusion about foils, but it may also be possible997

that they have questions about the original robot plan. For the robot plan998

πR = 〈a1, ..., an〉, user could raise questions of the following types999

1. Why perform action ai? (where ai ∈ πR)1000

2. How can action ai be performed when the precondition p is not met?1001

(where ai ∈ πR and p ∈ prec+
ai or p ∈ prec−ai in the human model MH)1002

Question (1) captures the user’s concerns regarding the use of any particular1003

action in the plan, while question (2) captures their concerns regarding the1004
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validity of the plan. Other questions, such as achievement of goals and questions1005

about the overall plan can be cast in terms of these more basic questions. For1006

answering questions of the first type, we can easily adapt approaches discussed1007

in works like [3]. For a given action, these approaches try to find causal links1008

that capture the specific action’s contributions. We can leverage the hierarchy1009

specified by the abstraction lattice to identify causal links consisting of higher-1010

level concepts.1011

For Question (2), it is possible to view such questions as another type of foil.1012

While in earlier sections we tried to find abstract models where a particular foil1013

can be refuted, here we just need to find the level at which the specified pre-1014

conditions can be met. In the absence of disjunctive preconditions, we wouldn’t1015

need to perform a search to find such models, but rather choose the first ab-1016

stract model where fluents corresponding to the preconditions in question is1017

introduced.1018

This paper mostly focuses on cases where foils are fully specified. Such fully1019

specified foils may not always be available and the human may instead be only1020

ready to specify certain parts of the foil. In such cases, the exact foil set would1021

consist of all plans that could potentially satisfy the plan level constraints being1022

specified by the user question. In [46], the methods discussed in this paper have1023

been extended to handle such cases. The work tries to handle such partial foil1024

specifications by compiling it directly into each model in the abstraction lattice1025

without generating the complete set of foils. Though the work only looks at1026

employing blind search to generate such explanations. Such abstraction based1027

explanations have also been used to generate explanations in the context of1028

providing assistance for domain-authoring tools [48].1029
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